github.com/zxy12/golang151_with_comment@v0.0.0-20190507085033-721809559d3c/go/parser/parser.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package parser implements a parser for Go source files. Input may be
     6  // provided in a variety of forms (see the various Parse* functions); the
     7  // output is an abstract syntax tree (AST) representing the Go source. The
     8  // parser is invoked through one of the Parse* functions.
     9  //
    10  // The parser accepts a larger language than is syntactically permitted by
    11  // the Go spec, for simplicity, and for improved robustness in the presence
    12  // of syntax errors. For instance, in method declarations, the receiver is
    13  // treated like an ordinary parameter list and thus may contain multiple
    14  // entries where the spec permits exactly one. Consequently, the corresponding
    15  // field in the AST (ast.FuncDecl.Recv) field is not restricted to one entry.
    16  //
    17  package parser
    18  
    19  import (
    20  	"fmt"
    21  	"go/ast"
    22  	"go/scanner"
    23  	"go/token"
    24  	"strconv"
    25  	"strings"
    26  	"unicode"
    27  )
    28  
    29  // The parser structure holds the parser's internal state.
    30  type parser struct {
    31  	file    *token.File
    32  	errors  scanner.ErrorList
    33  	scanner scanner.Scanner
    34  
    35  	// Tracing/debugging
    36  	mode   Mode // parsing mode
    37  	trace  bool // == (mode & Trace != 0)
    38  	indent int  // indentation used for tracing output
    39  
    40  	// Comments
    41  	comments    []*ast.CommentGroup
    42  	leadComment *ast.CommentGroup // last lead comment
    43  	lineComment *ast.CommentGroup // last line comment
    44  
    45  	// Next token
    46  	pos token.Pos   // token position
    47  	tok token.Token // one token look-ahead
    48  	lit string      // token literal
    49  
    50  	// Error recovery
    51  	// (used to limit the number of calls to syncXXX functions
    52  	// w/o making scanning progress - avoids potential endless
    53  	// loops across multiple parser functions during error recovery)
    54  	syncPos token.Pos // last synchronization position
    55  	syncCnt int       // number of calls to syncXXX without progress
    56  
    57  	// Non-syntactic parser control
    58  	exprLev int  // < 0: in control clause, >= 0: in expression
    59  	inRhs   bool // if set, the parser is parsing a rhs expression
    60  
    61  	// Ordinary identifier scopes
    62  	pkgScope   *ast.Scope        // pkgScope.Outer == nil
    63  	topScope   *ast.Scope        // top-most scope; may be pkgScope
    64  	unresolved []*ast.Ident      // unresolved identifiers
    65  	imports    []*ast.ImportSpec // list of imports
    66  
    67  	// Label scopes
    68  	// (maintained by open/close LabelScope)
    69  	labelScope  *ast.Scope     // label scope for current function
    70  	targetStack [][]*ast.Ident // stack of unresolved labels
    71  }
    72  
    73  func (p *parser) init(fset *token.FileSet, filename string, src []byte, mode Mode) {
    74  	p.file = fset.AddFile(filename, -1, len(src))
    75  	var m scanner.Mode
    76  	if mode&ParseComments != 0 {
    77  		m = scanner.ScanComments
    78  	}
    79  	eh := func(pos token.Position, msg string) { p.errors.Add(pos, msg) }
    80  	p.scanner.Init(p.file, src, eh, m)
    81  
    82  	p.mode = mode
    83  	p.trace = mode&Trace != 0 // for convenience (p.trace is used frequently)
    84  
    85  	p.next()
    86  }
    87  
    88  // ----------------------------------------------------------------------------
    89  // Scoping support
    90  
    91  func (p *parser) openScope() {
    92  	p.topScope = ast.NewScope(p.topScope)
    93  }
    94  
    95  func (p *parser) closeScope() {
    96  	p.topScope = p.topScope.Outer
    97  }
    98  
    99  func (p *parser) openLabelScope() {
   100  	p.labelScope = ast.NewScope(p.labelScope)
   101  	p.targetStack = append(p.targetStack, nil)
   102  }
   103  
   104  func (p *parser) closeLabelScope() {
   105  	// resolve labels
   106  	n := len(p.targetStack) - 1
   107  	scope := p.labelScope
   108  	for _, ident := range p.targetStack[n] {
   109  		ident.Obj = scope.Lookup(ident.Name)
   110  		if ident.Obj == nil && p.mode&DeclarationErrors != 0 {
   111  			p.error(ident.Pos(), fmt.Sprintf("label %s undefined", ident.Name))
   112  		}
   113  	}
   114  	// pop label scope
   115  	p.targetStack = p.targetStack[0:n]
   116  	p.labelScope = p.labelScope.Outer
   117  }
   118  
   119  func (p *parser) declare(decl, data interface{}, scope *ast.Scope, kind ast.ObjKind, idents ...*ast.Ident) {
   120  	for _, ident := range idents {
   121  		assert(ident.Obj == nil, "identifier already declared or resolved")
   122  		obj := ast.NewObj(kind, ident.Name)
   123  		// remember the corresponding declaration for redeclaration
   124  		// errors and global variable resolution/typechecking phase
   125  		obj.Decl = decl
   126  		obj.Data = data
   127  		ident.Obj = obj
   128  		if ident.Name != "_" {
   129  			if alt := scope.Insert(obj); alt != nil && p.mode&DeclarationErrors != 0 {
   130  				prevDecl := ""
   131  				if pos := alt.Pos(); pos.IsValid() {
   132  					prevDecl = fmt.Sprintf("\n\tprevious declaration at %s", p.file.Position(pos))
   133  				}
   134  				p.error(ident.Pos(), fmt.Sprintf("%s redeclared in this block%s", ident.Name, prevDecl))
   135  			}
   136  		}
   137  	}
   138  }
   139  
   140  func (p *parser) shortVarDecl(decl *ast.AssignStmt, list []ast.Expr) {
   141  	// Go spec: A short variable declaration may redeclare variables
   142  	// provided they were originally declared in the same block with
   143  	// the same type, and at least one of the non-blank variables is new.
   144  	n := 0 // number of new variables
   145  	for _, x := range list {
   146  		if ident, isIdent := x.(*ast.Ident); isIdent {
   147  			assert(ident.Obj == nil, "identifier already declared or resolved")
   148  			obj := ast.NewObj(ast.Var, ident.Name)
   149  			// remember corresponding assignment for other tools
   150  			obj.Decl = decl
   151  			ident.Obj = obj
   152  			if ident.Name != "_" {
   153  				if alt := p.topScope.Insert(obj); alt != nil {
   154  					ident.Obj = alt // redeclaration
   155  				} else {
   156  					n++ // new declaration
   157  				}
   158  			}
   159  		} else {
   160  			p.errorExpected(x.Pos(), "identifier on left side of :=")
   161  		}
   162  	}
   163  	if n == 0 && p.mode&DeclarationErrors != 0 {
   164  		p.error(list[0].Pos(), "no new variables on left side of :=")
   165  	}
   166  }
   167  
   168  // The unresolved object is a sentinel to mark identifiers that have been added
   169  // to the list of unresolved identifiers. The sentinel is only used for verifying
   170  // internal consistency.
   171  var unresolved = new(ast.Object)
   172  
   173  // If x is an identifier, tryResolve attempts to resolve x by looking up
   174  // the object it denotes. If no object is found and collectUnresolved is
   175  // set, x is marked as unresolved and collected in the list of unresolved
   176  // identifiers.
   177  //
   178  func (p *parser) tryResolve(x ast.Expr, collectUnresolved bool) {
   179  	// nothing to do if x is not an identifier or the blank identifier
   180  	ident, _ := x.(*ast.Ident)
   181  	if ident == nil {
   182  		return
   183  	}
   184  	assert(ident.Obj == nil, "identifier already declared or resolved")
   185  	if ident.Name == "_" {
   186  		return
   187  	}
   188  	// try to resolve the identifier
   189  	for s := p.topScope; s != nil; s = s.Outer {
   190  		if obj := s.Lookup(ident.Name); obj != nil {
   191  			ident.Obj = obj
   192  			return
   193  		}
   194  	}
   195  	// all local scopes are known, so any unresolved identifier
   196  	// must be found either in the file scope, package scope
   197  	// (perhaps in another file), or universe scope --- collect
   198  	// them so that they can be resolved later
   199  	if collectUnresolved {
   200  		ident.Obj = unresolved
   201  		p.unresolved = append(p.unresolved, ident)
   202  	}
   203  }
   204  
   205  func (p *parser) resolve(x ast.Expr) {
   206  	p.tryResolve(x, true)
   207  }
   208  
   209  // ----------------------------------------------------------------------------
   210  // Parsing support
   211  
   212  func (p *parser) printTrace(a ...interface{}) {
   213  	const dots = ". . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "
   214  	const n = len(dots)
   215  	pos := p.file.Position(p.pos)
   216  	fmt.Printf("%5d:%3d: ", pos.Line, pos.Column)
   217  	i := 2 * p.indent
   218  	for i > n {
   219  		fmt.Print(dots)
   220  		i -= n
   221  	}
   222  	// i <= n
   223  	fmt.Print(dots[0:i])
   224  	fmt.Println(a...)
   225  }
   226  
   227  func trace(p *parser, msg string) *parser {
   228  	p.printTrace(msg, "(")
   229  	p.indent++
   230  	return p
   231  }
   232  
   233  // Usage pattern: defer un(trace(p, "..."))
   234  func un(p *parser) {
   235  	p.indent--
   236  	p.printTrace(")")
   237  }
   238  
   239  // Advance to the next token.
   240  func (p *parser) next0() {
   241  	// Because of one-token look-ahead, print the previous token
   242  	// when tracing as it provides a more readable output. The
   243  	// very first token (!p.pos.IsValid()) is not initialized
   244  	// (it is token.ILLEGAL), so don't print it .
   245  	if p.trace && p.pos.IsValid() {
   246  		s := p.tok.String()
   247  		switch {
   248  		case p.tok.IsLiteral():
   249  			p.printTrace(s, p.lit)
   250  		case p.tok.IsOperator(), p.tok.IsKeyword():
   251  			p.printTrace("\"" + s + "\"")
   252  		default:
   253  			p.printTrace(s)
   254  		}
   255  	}
   256  
   257  	p.pos, p.tok, p.lit = p.scanner.Scan()
   258  }
   259  
   260  // Consume a comment and return it and the line on which it ends.
   261  func (p *parser) consumeComment() (comment *ast.Comment, endline int) {
   262  	// /*-style comments may end on a different line than where they start.
   263  	// Scan the comment for '\n' chars and adjust endline accordingly.
   264  	endline = p.file.Line(p.pos)
   265  	if p.lit[1] == '*' {
   266  		// don't use range here - no need to decode Unicode code points
   267  		for i := 0; i < len(p.lit); i++ {
   268  			if p.lit[i] == '\n' {
   269  				endline++
   270  			}
   271  		}
   272  	}
   273  
   274  	comment = &ast.Comment{Slash: p.pos, Text: p.lit}
   275  	p.next0()
   276  
   277  	return
   278  }
   279  
   280  // Consume a group of adjacent comments, add it to the parser's
   281  // comments list, and return it together with the line at which
   282  // the last comment in the group ends. A non-comment token or n
   283  // empty lines terminate a comment group.
   284  //
   285  func (p *parser) consumeCommentGroup(n int) (comments *ast.CommentGroup, endline int) {
   286  	var list []*ast.Comment
   287  	endline = p.file.Line(p.pos)
   288  	for p.tok == token.COMMENT && p.file.Line(p.pos) <= endline+n {
   289  		var comment *ast.Comment
   290  		comment, endline = p.consumeComment()
   291  		list = append(list, comment)
   292  	}
   293  
   294  	// add comment group to the comments list
   295  	comments = &ast.CommentGroup{List: list}
   296  	p.comments = append(p.comments, comments)
   297  
   298  	return
   299  }
   300  
   301  // Advance to the next non-comment token. In the process, collect
   302  // any comment groups encountered, and remember the last lead and
   303  // and line comments.
   304  //
   305  // A lead comment is a comment group that starts and ends in a
   306  // line without any other tokens and that is followed by a non-comment
   307  // token on the line immediately after the comment group.
   308  //
   309  // A line comment is a comment group that follows a non-comment
   310  // token on the same line, and that has no tokens after it on the line
   311  // where it ends.
   312  //
   313  // Lead and line comments may be considered documentation that is
   314  // stored in the AST.
   315  //
   316  func (p *parser) next() {
   317  	p.leadComment = nil
   318  	p.lineComment = nil
   319  	prev := p.pos
   320  	p.next0()
   321  
   322  	if p.tok == token.COMMENT {
   323  		var comment *ast.CommentGroup
   324  		var endline int
   325  
   326  		if p.file.Line(p.pos) == p.file.Line(prev) {
   327  			// The comment is on same line as the previous token; it
   328  			// cannot be a lead comment but may be a line comment.
   329  			comment, endline = p.consumeCommentGroup(0)
   330  			if p.file.Line(p.pos) != endline {
   331  				// The next token is on a different line, thus
   332  				// the last comment group is a line comment.
   333  				p.lineComment = comment
   334  			}
   335  		}
   336  
   337  		// consume successor comments, if any
   338  		endline = -1
   339  		for p.tok == token.COMMENT {
   340  			comment, endline = p.consumeCommentGroup(1)
   341  		}
   342  
   343  		if endline+1 == p.file.Line(p.pos) {
   344  			// The next token is following on the line immediately after the
   345  			// comment group, thus the last comment group is a lead comment.
   346  			p.leadComment = comment
   347  		}
   348  	}
   349  }
   350  
   351  // A bailout panic is raised to indicate early termination.
   352  type bailout struct{}
   353  
   354  func (p *parser) error(pos token.Pos, msg string) {
   355  	epos := p.file.Position(pos)
   356  
   357  	// If AllErrors is not set, discard errors reported on the same line
   358  	// as the last recorded error and stop parsing if there are more than
   359  	// 10 errors.
   360  	if p.mode&AllErrors == 0 {
   361  		n := len(p.errors)
   362  		if n > 0 && p.errors[n-1].Pos.Line == epos.Line {
   363  			return // discard - likely a spurious error
   364  		}
   365  		if n > 10 {
   366  			panic(bailout{})
   367  		}
   368  	}
   369  
   370  	p.errors.Add(epos, msg)
   371  }
   372  
   373  func (p *parser) errorExpected(pos token.Pos, msg string) {
   374  	msg = "expected " + msg
   375  	if pos == p.pos {
   376  		// the error happened at the current position;
   377  		// make the error message more specific
   378  		if p.tok == token.SEMICOLON && p.lit == "\n" {
   379  			msg += ", found newline"
   380  		} else {
   381  			msg += ", found '" + p.tok.String() + "'"
   382  			if p.tok.IsLiteral() {
   383  				msg += " " + p.lit
   384  			}
   385  		}
   386  	}
   387  	p.error(pos, msg)
   388  }
   389  
   390  func (p *parser) expect(tok token.Token) token.Pos {
   391  	pos := p.pos
   392  	if p.tok != tok {
   393  		p.errorExpected(pos, "'"+tok.String()+"'")
   394  	}
   395  	p.next() // make progress
   396  	return pos
   397  }
   398  
   399  // expectClosing is like expect but provides a better error message
   400  // for the common case of a missing comma before a newline.
   401  //
   402  func (p *parser) expectClosing(tok token.Token, context string) token.Pos {
   403  	if p.tok != tok && p.tok == token.SEMICOLON && p.lit == "\n" {
   404  		p.error(p.pos, "missing ',' before newline in "+context)
   405  		p.next()
   406  	}
   407  	return p.expect(tok)
   408  }
   409  
   410  func (p *parser) expectSemi() {
   411  	// semicolon is optional before a closing ')' or '}'
   412  	if p.tok != token.RPAREN && p.tok != token.RBRACE {
   413  		if p.tok == token.SEMICOLON {
   414  			p.next()
   415  		} else {
   416  			p.errorExpected(p.pos, "';'")
   417  			syncStmt(p)
   418  		}
   419  	}
   420  }
   421  
   422  func (p *parser) atComma(context string, follow token.Token) bool {
   423  	if p.tok == token.COMMA {
   424  		return true
   425  	}
   426  	if p.tok != follow {
   427  		msg := "missing ','"
   428  		if p.tok == token.SEMICOLON && p.lit == "\n" {
   429  			msg += " before newline"
   430  		}
   431  		p.error(p.pos, msg+" in "+context)
   432  		return true // "insert" comma and continue
   433  	}
   434  	return false
   435  }
   436  
   437  func assert(cond bool, msg string) {
   438  	if !cond {
   439  		panic("go/parser internal error: " + msg)
   440  	}
   441  }
   442  
   443  // syncStmt advances to the next statement.
   444  // Used for synchronization after an error.
   445  //
   446  func syncStmt(p *parser) {
   447  	for {
   448  		switch p.tok {
   449  		case token.BREAK, token.CONST, token.CONTINUE, token.DEFER,
   450  			token.FALLTHROUGH, token.FOR, token.GO, token.GOTO,
   451  			token.IF, token.RETURN, token.SELECT, token.SWITCH,
   452  			token.TYPE, token.VAR:
   453  			// Return only if parser made some progress since last
   454  			// sync or if it has not reached 10 sync calls without
   455  			// progress. Otherwise consume at least one token to
   456  			// avoid an endless parser loop (it is possible that
   457  			// both parseOperand and parseStmt call syncStmt and
   458  			// correctly do not advance, thus the need for the
   459  			// invocation limit p.syncCnt).
   460  			if p.pos == p.syncPos && p.syncCnt < 10 {
   461  				p.syncCnt++
   462  				return
   463  			}
   464  			if p.pos > p.syncPos {
   465  				p.syncPos = p.pos
   466  				p.syncCnt = 0
   467  				return
   468  			}
   469  			// Reaching here indicates a parser bug, likely an
   470  			// incorrect token list in this function, but it only
   471  			// leads to skipping of possibly correct code if a
   472  			// previous error is present, and thus is preferred
   473  			// over a non-terminating parse.
   474  		case token.EOF:
   475  			return
   476  		}
   477  		p.next()
   478  	}
   479  }
   480  
   481  // syncDecl advances to the next declaration.
   482  // Used for synchronization after an error.
   483  //
   484  func syncDecl(p *parser) {
   485  	for {
   486  		switch p.tok {
   487  		case token.CONST, token.TYPE, token.VAR:
   488  			// see comments in syncStmt
   489  			if p.pos == p.syncPos && p.syncCnt < 10 {
   490  				p.syncCnt++
   491  				return
   492  			}
   493  			if p.pos > p.syncPos {
   494  				p.syncPos = p.pos
   495  				p.syncCnt = 0
   496  				return
   497  			}
   498  		case token.EOF:
   499  			return
   500  		}
   501  		p.next()
   502  	}
   503  }
   504  
   505  // safePos returns a valid file position for a given position: If pos
   506  // is valid to begin with, safePos returns pos. If pos is out-of-range,
   507  // safePos returns the EOF position.
   508  //
   509  // This is hack to work around "artificial" end positions in the AST which
   510  // are computed by adding 1 to (presumably valid) token positions. If the
   511  // token positions are invalid due to parse errors, the resulting end position
   512  // may be past the file's EOF position, which would lead to panics if used
   513  // later on.
   514  //
   515  func (p *parser) safePos(pos token.Pos) (res token.Pos) {
   516  	defer func() {
   517  		if recover() != nil {
   518  			res = token.Pos(p.file.Base() + p.file.Size()) // EOF position
   519  		}
   520  	}()
   521  	_ = p.file.Offset(pos) // trigger a panic if position is out-of-range
   522  	return pos
   523  }
   524  
   525  // ----------------------------------------------------------------------------
   526  // Identifiers
   527  
   528  func (p *parser) parseIdent() *ast.Ident {
   529  	pos := p.pos
   530  	name := "_"
   531  	if p.tok == token.IDENT {
   532  		name = p.lit
   533  		p.next()
   534  	} else {
   535  		p.expect(token.IDENT) // use expect() error handling
   536  	}
   537  	return &ast.Ident{NamePos: pos, Name: name}
   538  }
   539  
   540  func (p *parser) parseIdentList() (list []*ast.Ident) {
   541  	if p.trace {
   542  		defer un(trace(p, "IdentList"))
   543  	}
   544  
   545  	list = append(list, p.parseIdent())
   546  	for p.tok == token.COMMA {
   547  		p.next()
   548  		list = append(list, p.parseIdent())
   549  	}
   550  
   551  	return
   552  }
   553  
   554  // ----------------------------------------------------------------------------
   555  // Common productions
   556  
   557  // If lhs is set, result list elements which are identifiers are not resolved.
   558  func (p *parser) parseExprList(lhs bool) (list []ast.Expr) {
   559  	if p.trace {
   560  		defer un(trace(p, "ExpressionList"))
   561  	}
   562  
   563  	list = append(list, p.checkExpr(p.parseExpr(lhs)))
   564  	for p.tok == token.COMMA {
   565  		p.next()
   566  		list = append(list, p.checkExpr(p.parseExpr(lhs)))
   567  	}
   568  
   569  	return
   570  }
   571  
   572  func (p *parser) parseLhsList() []ast.Expr {
   573  	old := p.inRhs
   574  	p.inRhs = false
   575  	list := p.parseExprList(true)
   576  	switch p.tok {
   577  	case token.DEFINE:
   578  		// lhs of a short variable declaration
   579  		// but doesn't enter scope until later:
   580  		// caller must call p.shortVarDecl(p.makeIdentList(list))
   581  		// at appropriate time.
   582  	case token.COLON:
   583  		// lhs of a label declaration or a communication clause of a select
   584  		// statement (parseLhsList is not called when parsing the case clause
   585  		// of a switch statement):
   586  		// - labels are declared by the caller of parseLhsList
   587  		// - for communication clauses, if there is a stand-alone identifier
   588  		//   followed by a colon, we have a syntax error; there is no need
   589  		//   to resolve the identifier in that case
   590  	default:
   591  		// identifiers must be declared elsewhere
   592  		for _, x := range list {
   593  			p.resolve(x)
   594  		}
   595  	}
   596  	p.inRhs = old
   597  	return list
   598  }
   599  
   600  func (p *parser) parseRhsList() []ast.Expr {
   601  	old := p.inRhs
   602  	p.inRhs = true
   603  	list := p.parseExprList(false)
   604  	p.inRhs = old
   605  	return list
   606  }
   607  
   608  // ----------------------------------------------------------------------------
   609  // Types
   610  
   611  func (p *parser) parseType() ast.Expr {
   612  	if p.trace {
   613  		defer un(trace(p, "Type"))
   614  	}
   615  
   616  	typ := p.tryType()
   617  
   618  	if typ == nil {
   619  		pos := p.pos
   620  		p.errorExpected(pos, "type")
   621  		p.next() // make progress
   622  		return &ast.BadExpr{From: pos, To: p.pos}
   623  	}
   624  
   625  	return typ
   626  }
   627  
   628  // If the result is an identifier, it is not resolved.
   629  func (p *parser) parseTypeName() ast.Expr {
   630  	if p.trace {
   631  		defer un(trace(p, "TypeName"))
   632  	}
   633  
   634  	ident := p.parseIdent()
   635  	// don't resolve ident yet - it may be a parameter or field name
   636  
   637  	if p.tok == token.PERIOD {
   638  		// ident is a package name
   639  		p.next()
   640  		p.resolve(ident)
   641  		sel := p.parseIdent()
   642  		return &ast.SelectorExpr{X: ident, Sel: sel}
   643  	}
   644  
   645  	return ident
   646  }
   647  
   648  func (p *parser) parseArrayType() ast.Expr {
   649  	if p.trace {
   650  		defer un(trace(p, "ArrayType"))
   651  	}
   652  
   653  	lbrack := p.expect(token.LBRACK)
   654  	p.exprLev++
   655  	var len ast.Expr
   656  	// always permit ellipsis for more fault-tolerant parsing
   657  	if p.tok == token.ELLIPSIS {
   658  		len = &ast.Ellipsis{Ellipsis: p.pos}
   659  		p.next()
   660  	} else if p.tok != token.RBRACK {
   661  		len = p.parseRhs()
   662  	}
   663  	p.exprLev--
   664  	p.expect(token.RBRACK)
   665  	elt := p.parseType()
   666  
   667  	return &ast.ArrayType{Lbrack: lbrack, Len: len, Elt: elt}
   668  }
   669  
   670  func (p *parser) makeIdentList(list []ast.Expr) []*ast.Ident {
   671  	idents := make([]*ast.Ident, len(list))
   672  	for i, x := range list {
   673  		ident, isIdent := x.(*ast.Ident)
   674  		if !isIdent {
   675  			if _, isBad := x.(*ast.BadExpr); !isBad {
   676  				// only report error if it's a new one
   677  				p.errorExpected(x.Pos(), "identifier")
   678  			}
   679  			ident = &ast.Ident{NamePos: x.Pos(), Name: "_"}
   680  		}
   681  		idents[i] = ident
   682  	}
   683  	return idents
   684  }
   685  
   686  func (p *parser) parseFieldDecl(scope *ast.Scope) *ast.Field {
   687  	if p.trace {
   688  		defer un(trace(p, "FieldDecl"))
   689  	}
   690  
   691  	doc := p.leadComment
   692  
   693  	// FieldDecl
   694  	list, typ := p.parseVarList(false)
   695  
   696  	// Tag
   697  	var tag *ast.BasicLit
   698  	if p.tok == token.STRING {
   699  		tag = &ast.BasicLit{ValuePos: p.pos, Kind: p.tok, Value: p.lit}
   700  		p.next()
   701  	}
   702  
   703  	// analyze case
   704  	var idents []*ast.Ident
   705  	if typ != nil {
   706  		// IdentifierList Type
   707  		idents = p.makeIdentList(list)
   708  	} else {
   709  		// ["*"] TypeName (AnonymousField)
   710  		typ = list[0] // we always have at least one element
   711  		if n := len(list); n > 1 || !isTypeName(deref(typ)) {
   712  			pos := typ.Pos()
   713  			p.errorExpected(pos, "anonymous field")
   714  			typ = &ast.BadExpr{From: pos, To: p.safePos(list[n-1].End())}
   715  		}
   716  	}
   717  
   718  	p.expectSemi() // call before accessing p.linecomment
   719  
   720  	field := &ast.Field{Doc: doc, Names: idents, Type: typ, Tag: tag, Comment: p.lineComment}
   721  	p.declare(field, nil, scope, ast.Var, idents...)
   722  	p.resolve(typ)
   723  
   724  	return field
   725  }
   726  
   727  func (p *parser) parseStructType() *ast.StructType {
   728  	if p.trace {
   729  		defer un(trace(p, "StructType"))
   730  	}
   731  
   732  	pos := p.expect(token.STRUCT)
   733  	lbrace := p.expect(token.LBRACE)
   734  	scope := ast.NewScope(nil) // struct scope
   735  	var list []*ast.Field
   736  	for p.tok == token.IDENT || p.tok == token.MUL || p.tok == token.LPAREN {
   737  		// a field declaration cannot start with a '(' but we accept
   738  		// it here for more robust parsing and better error messages
   739  		// (parseFieldDecl will check and complain if necessary)
   740  		list = append(list, p.parseFieldDecl(scope))
   741  	}
   742  	rbrace := p.expect(token.RBRACE)
   743  
   744  	return &ast.StructType{
   745  		Struct: pos,
   746  		Fields: &ast.FieldList{
   747  			Opening: lbrace,
   748  			List:    list,
   749  			Closing: rbrace,
   750  		},
   751  	}
   752  }
   753  
   754  func (p *parser) parsePointerType() *ast.StarExpr {
   755  	if p.trace {
   756  		defer un(trace(p, "PointerType"))
   757  	}
   758  
   759  	star := p.expect(token.MUL)
   760  	base := p.parseType()
   761  
   762  	return &ast.StarExpr{Star: star, X: base}
   763  }
   764  
   765  // If the result is an identifier, it is not resolved.
   766  func (p *parser) tryVarType(isParam bool) ast.Expr {
   767  	if isParam && p.tok == token.ELLIPSIS {
   768  		pos := p.pos
   769  		p.next()
   770  		typ := p.tryIdentOrType() // don't use parseType so we can provide better error message
   771  		if typ != nil {
   772  			p.resolve(typ)
   773  		} else {
   774  			p.error(pos, "'...' parameter is missing type")
   775  			typ = &ast.BadExpr{From: pos, To: p.pos}
   776  		}
   777  		return &ast.Ellipsis{Ellipsis: pos, Elt: typ}
   778  	}
   779  	return p.tryIdentOrType()
   780  }
   781  
   782  // If the result is an identifier, it is not resolved.
   783  func (p *parser) parseVarType(isParam bool) ast.Expr {
   784  	typ := p.tryVarType(isParam)
   785  	if typ == nil {
   786  		pos := p.pos
   787  		p.errorExpected(pos, "type")
   788  		p.next() // make progress
   789  		typ = &ast.BadExpr{From: pos, To: p.pos}
   790  	}
   791  	return typ
   792  }
   793  
   794  // If any of the results are identifiers, they are not resolved.
   795  func (p *parser) parseVarList(isParam bool) (list []ast.Expr, typ ast.Expr) {
   796  	if p.trace {
   797  		defer un(trace(p, "VarList"))
   798  	}
   799  
   800  	// a list of identifiers looks like a list of type names
   801  	//
   802  	// parse/tryVarType accepts any type (including parenthesized
   803  	// ones) even though the syntax does not permit them here: we
   804  	// accept them all for more robust parsing and complain later
   805  	for typ := p.parseVarType(isParam); typ != nil; {
   806  		list = append(list, typ)
   807  		if p.tok != token.COMMA {
   808  			break
   809  		}
   810  		p.next()
   811  		typ = p.tryVarType(isParam) // maybe nil as in: func f(int,) {}
   812  	}
   813  
   814  	// if we had a list of identifiers, it must be followed by a type
   815  	typ = p.tryVarType(isParam)
   816  
   817  	return
   818  }
   819  
   820  func (p *parser) parseParameterList(scope *ast.Scope, ellipsisOk bool) (params []*ast.Field) {
   821  	if p.trace {
   822  		defer un(trace(p, "ParameterList"))
   823  	}
   824  
   825  	// ParameterDecl
   826  	list, typ := p.parseVarList(ellipsisOk)
   827  
   828  	// analyze case
   829  	if typ != nil {
   830  		// IdentifierList Type
   831  		idents := p.makeIdentList(list)
   832  		field := &ast.Field{Names: idents, Type: typ}
   833  		params = append(params, field)
   834  		// Go spec: The scope of an identifier denoting a function
   835  		// parameter or result variable is the function body.
   836  		p.declare(field, nil, scope, ast.Var, idents...)
   837  		p.resolve(typ)
   838  		if !p.atComma("parameter list", token.RPAREN) {
   839  			return
   840  		}
   841  		p.next()
   842  		for p.tok != token.RPAREN && p.tok != token.EOF {
   843  			idents := p.parseIdentList()
   844  			typ := p.parseVarType(ellipsisOk)
   845  			field := &ast.Field{Names: idents, Type: typ}
   846  			params = append(params, field)
   847  			// Go spec: The scope of an identifier denoting a function
   848  			// parameter or result variable is the function body.
   849  			p.declare(field, nil, scope, ast.Var, idents...)
   850  			p.resolve(typ)
   851  			if !p.atComma("parameter list", token.RPAREN) {
   852  				break
   853  			}
   854  			p.next()
   855  		}
   856  		return
   857  	}
   858  
   859  	// Type { "," Type } (anonymous parameters)
   860  	params = make([]*ast.Field, len(list))
   861  	for i, typ := range list {
   862  		p.resolve(typ)
   863  		params[i] = &ast.Field{Type: typ}
   864  	}
   865  	return
   866  }
   867  
   868  func (p *parser) parseParameters(scope *ast.Scope, ellipsisOk bool) *ast.FieldList {
   869  	if p.trace {
   870  		defer un(trace(p, "Parameters"))
   871  	}
   872  
   873  	var params []*ast.Field
   874  	lparen := p.expect(token.LPAREN)
   875  	if p.tok != token.RPAREN {
   876  		params = p.parseParameterList(scope, ellipsisOk)
   877  	}
   878  	rparen := p.expect(token.RPAREN)
   879  
   880  	return &ast.FieldList{Opening: lparen, List: params, Closing: rparen}
   881  }
   882  
   883  func (p *parser) parseResult(scope *ast.Scope) *ast.FieldList {
   884  	if p.trace {
   885  		defer un(trace(p, "Result"))
   886  	}
   887  
   888  	if p.tok == token.LPAREN {
   889  		return p.parseParameters(scope, false)
   890  	}
   891  
   892  	typ := p.tryType()
   893  	if typ != nil {
   894  		list := make([]*ast.Field, 1)
   895  		list[0] = &ast.Field{Type: typ}
   896  		return &ast.FieldList{List: list}
   897  	}
   898  
   899  	return nil
   900  }
   901  
   902  func (p *parser) parseSignature(scope *ast.Scope) (params, results *ast.FieldList) {
   903  	if p.trace {
   904  		defer un(trace(p, "Signature"))
   905  	}
   906  
   907  	params = p.parseParameters(scope, true)
   908  	results = p.parseResult(scope)
   909  
   910  	return
   911  }
   912  
   913  func (p *parser) parseFuncType() (*ast.FuncType, *ast.Scope) {
   914  	if p.trace {
   915  		defer un(trace(p, "FuncType"))
   916  	}
   917  
   918  	pos := p.expect(token.FUNC)
   919  	scope := ast.NewScope(p.topScope) // function scope
   920  	params, results := p.parseSignature(scope)
   921  
   922  	return &ast.FuncType{Func: pos, Params: params, Results: results}, scope
   923  }
   924  
   925  func (p *parser) parseMethodSpec(scope *ast.Scope) *ast.Field {
   926  	if p.trace {
   927  		defer un(trace(p, "MethodSpec"))
   928  	}
   929  
   930  	doc := p.leadComment
   931  	var idents []*ast.Ident
   932  	var typ ast.Expr
   933  	x := p.parseTypeName()
   934  	if ident, isIdent := x.(*ast.Ident); isIdent && p.tok == token.LPAREN {
   935  		// method
   936  		idents = []*ast.Ident{ident}
   937  		scope := ast.NewScope(nil) // method scope
   938  		params, results := p.parseSignature(scope)
   939  		typ = &ast.FuncType{Func: token.NoPos, Params: params, Results: results}
   940  	} else {
   941  		// embedded interface
   942  		typ = x
   943  		p.resolve(typ)
   944  	}
   945  	p.expectSemi() // call before accessing p.linecomment
   946  
   947  	spec := &ast.Field{Doc: doc, Names: idents, Type: typ, Comment: p.lineComment}
   948  	p.declare(spec, nil, scope, ast.Fun, idents...)
   949  
   950  	return spec
   951  }
   952  
   953  func (p *parser) parseInterfaceType() *ast.InterfaceType {
   954  	if p.trace {
   955  		defer un(trace(p, "InterfaceType"))
   956  	}
   957  
   958  	pos := p.expect(token.INTERFACE)
   959  	lbrace := p.expect(token.LBRACE)
   960  	scope := ast.NewScope(nil) // interface scope
   961  	var list []*ast.Field
   962  	for p.tok == token.IDENT {
   963  		list = append(list, p.parseMethodSpec(scope))
   964  	}
   965  	rbrace := p.expect(token.RBRACE)
   966  
   967  	return &ast.InterfaceType{
   968  		Interface: pos,
   969  		Methods: &ast.FieldList{
   970  			Opening: lbrace,
   971  			List:    list,
   972  			Closing: rbrace,
   973  		},
   974  	}
   975  }
   976  
   977  func (p *parser) parseMapType() *ast.MapType {
   978  	if p.trace {
   979  		defer un(trace(p, "MapType"))
   980  	}
   981  
   982  	pos := p.expect(token.MAP)
   983  	p.expect(token.LBRACK)
   984  	key := p.parseType()
   985  	p.expect(token.RBRACK)
   986  	value := p.parseType()
   987  
   988  	return &ast.MapType{Map: pos, Key: key, Value: value}
   989  }
   990  
   991  func (p *parser) parseChanType() *ast.ChanType {
   992  	if p.trace {
   993  		defer un(trace(p, "ChanType"))
   994  	}
   995  
   996  	pos := p.pos
   997  	dir := ast.SEND | ast.RECV
   998  	var arrow token.Pos
   999  	if p.tok == token.CHAN {
  1000  		p.next()
  1001  		if p.tok == token.ARROW {
  1002  			arrow = p.pos
  1003  			p.next()
  1004  			dir = ast.SEND
  1005  		}
  1006  	} else {
  1007  		arrow = p.expect(token.ARROW)
  1008  		p.expect(token.CHAN)
  1009  		dir = ast.RECV
  1010  	}
  1011  	value := p.parseType()
  1012  
  1013  	return &ast.ChanType{Begin: pos, Arrow: arrow, Dir: dir, Value: value}
  1014  }
  1015  
  1016  // If the result is an identifier, it is not resolved.
  1017  func (p *parser) tryIdentOrType() ast.Expr {
  1018  	switch p.tok {
  1019  	case token.IDENT:
  1020  		return p.parseTypeName()
  1021  	case token.LBRACK:
  1022  		return p.parseArrayType()
  1023  	case token.STRUCT:
  1024  		return p.parseStructType()
  1025  	case token.MUL:
  1026  		return p.parsePointerType()
  1027  	case token.FUNC:
  1028  		typ, _ := p.parseFuncType()
  1029  		return typ
  1030  	case token.INTERFACE:
  1031  		return p.parseInterfaceType()
  1032  	case token.MAP:
  1033  		return p.parseMapType()
  1034  	case token.CHAN, token.ARROW:
  1035  		return p.parseChanType()
  1036  	case token.LPAREN:
  1037  		lparen := p.pos
  1038  		p.next()
  1039  		typ := p.parseType()
  1040  		rparen := p.expect(token.RPAREN)
  1041  		return &ast.ParenExpr{Lparen: lparen, X: typ, Rparen: rparen}
  1042  	}
  1043  
  1044  	// no type found
  1045  	return nil
  1046  }
  1047  
  1048  func (p *parser) tryType() ast.Expr {
  1049  	typ := p.tryIdentOrType()
  1050  	if typ != nil {
  1051  		p.resolve(typ)
  1052  	}
  1053  	return typ
  1054  }
  1055  
  1056  // ----------------------------------------------------------------------------
  1057  // Blocks
  1058  
  1059  func (p *parser) parseStmtList() (list []ast.Stmt) {
  1060  	if p.trace {
  1061  		defer un(trace(p, "StatementList"))
  1062  	}
  1063  
  1064  	for p.tok != token.CASE && p.tok != token.DEFAULT && p.tok != token.RBRACE && p.tok != token.EOF {
  1065  		list = append(list, p.parseStmt())
  1066  	}
  1067  
  1068  	return
  1069  }
  1070  
  1071  func (p *parser) parseBody(scope *ast.Scope) *ast.BlockStmt {
  1072  	if p.trace {
  1073  		defer un(trace(p, "Body"))
  1074  	}
  1075  
  1076  	lbrace := p.expect(token.LBRACE)
  1077  	p.topScope = scope // open function scope
  1078  	p.openLabelScope()
  1079  	list := p.parseStmtList()
  1080  	p.closeLabelScope()
  1081  	p.closeScope()
  1082  	rbrace := p.expect(token.RBRACE)
  1083  
  1084  	return &ast.BlockStmt{Lbrace: lbrace, List: list, Rbrace: rbrace}
  1085  }
  1086  
  1087  func (p *parser) parseBlockStmt() *ast.BlockStmt {
  1088  	if p.trace {
  1089  		defer un(trace(p, "BlockStmt"))
  1090  	}
  1091  
  1092  	lbrace := p.expect(token.LBRACE)
  1093  	p.openScope()
  1094  	list := p.parseStmtList()
  1095  	p.closeScope()
  1096  	rbrace := p.expect(token.RBRACE)
  1097  
  1098  	return &ast.BlockStmt{Lbrace: lbrace, List: list, Rbrace: rbrace}
  1099  }
  1100  
  1101  // ----------------------------------------------------------------------------
  1102  // Expressions
  1103  
  1104  func (p *parser) parseFuncTypeOrLit() ast.Expr {
  1105  	if p.trace {
  1106  		defer un(trace(p, "FuncTypeOrLit"))
  1107  	}
  1108  
  1109  	typ, scope := p.parseFuncType()
  1110  	if p.tok != token.LBRACE {
  1111  		// function type only
  1112  		return typ
  1113  	}
  1114  
  1115  	p.exprLev++
  1116  	body := p.parseBody(scope)
  1117  	p.exprLev--
  1118  
  1119  	return &ast.FuncLit{Type: typ, Body: body}
  1120  }
  1121  
  1122  // parseOperand may return an expression or a raw type (incl. array
  1123  // types of the form [...]T. Callers must verify the result.
  1124  // If lhs is set and the result is an identifier, it is not resolved.
  1125  //
  1126  func (p *parser) parseOperand(lhs bool) ast.Expr {
  1127  	if p.trace {
  1128  		defer un(trace(p, "Operand"))
  1129  	}
  1130  
  1131  	switch p.tok {
  1132  	case token.IDENT:
  1133  		x := p.parseIdent()
  1134  		if !lhs {
  1135  			p.resolve(x)
  1136  		}
  1137  		return x
  1138  
  1139  	case token.INT, token.FLOAT, token.IMAG, token.CHAR, token.STRING:
  1140  		x := &ast.BasicLit{ValuePos: p.pos, Kind: p.tok, Value: p.lit}
  1141  		p.next()
  1142  		return x
  1143  
  1144  	case token.LPAREN:
  1145  		lparen := p.pos
  1146  		p.next()
  1147  		p.exprLev++
  1148  		x := p.parseRhsOrType() // types may be parenthesized: (some type)
  1149  		p.exprLev--
  1150  		rparen := p.expect(token.RPAREN)
  1151  		return &ast.ParenExpr{Lparen: lparen, X: x, Rparen: rparen}
  1152  
  1153  	case token.FUNC:
  1154  		return p.parseFuncTypeOrLit()
  1155  	}
  1156  
  1157  	if typ := p.tryIdentOrType(); typ != nil {
  1158  		// could be type for composite literal or conversion
  1159  		_, isIdent := typ.(*ast.Ident)
  1160  		assert(!isIdent, "type cannot be identifier")
  1161  		return typ
  1162  	}
  1163  
  1164  	// we have an error
  1165  	pos := p.pos
  1166  	p.errorExpected(pos, "operand")
  1167  	syncStmt(p)
  1168  	return &ast.BadExpr{From: pos, To: p.pos}
  1169  }
  1170  
  1171  func (p *parser) parseSelector(x ast.Expr) ast.Expr {
  1172  	if p.trace {
  1173  		defer un(trace(p, "Selector"))
  1174  	}
  1175  
  1176  	sel := p.parseIdent()
  1177  
  1178  	return &ast.SelectorExpr{X: x, Sel: sel}
  1179  }
  1180  
  1181  func (p *parser) parseTypeAssertion(x ast.Expr) ast.Expr {
  1182  	if p.trace {
  1183  		defer un(trace(p, "TypeAssertion"))
  1184  	}
  1185  
  1186  	lparen := p.expect(token.LPAREN)
  1187  	var typ ast.Expr
  1188  	if p.tok == token.TYPE {
  1189  		// type switch: typ == nil
  1190  		p.next()
  1191  	} else {
  1192  		typ = p.parseType()
  1193  	}
  1194  	rparen := p.expect(token.RPAREN)
  1195  
  1196  	return &ast.TypeAssertExpr{X: x, Type: typ, Lparen: lparen, Rparen: rparen}
  1197  }
  1198  
  1199  func (p *parser) parseIndexOrSlice(x ast.Expr) ast.Expr {
  1200  	if p.trace {
  1201  		defer un(trace(p, "IndexOrSlice"))
  1202  	}
  1203  
  1204  	const N = 3 // change the 3 to 2 to disable 3-index slices
  1205  	lbrack := p.expect(token.LBRACK)
  1206  	p.exprLev++
  1207  	var index [N]ast.Expr
  1208  	var colons [N - 1]token.Pos
  1209  	if p.tok != token.COLON {
  1210  		index[0] = p.parseRhs()
  1211  	}
  1212  	ncolons := 0
  1213  	for p.tok == token.COLON && ncolons < len(colons) {
  1214  		colons[ncolons] = p.pos
  1215  		ncolons++
  1216  		p.next()
  1217  		if p.tok != token.COLON && p.tok != token.RBRACK && p.tok != token.EOF {
  1218  			index[ncolons] = p.parseRhs()
  1219  		}
  1220  	}
  1221  	p.exprLev--
  1222  	rbrack := p.expect(token.RBRACK)
  1223  
  1224  	if ncolons > 0 {
  1225  		// slice expression
  1226  		slice3 := false
  1227  		if ncolons == 2 {
  1228  			slice3 = true
  1229  			// Check presence of 2nd and 3rd index here rather than during type-checking
  1230  			// to prevent erroneous programs from passing through gofmt (was issue 7305).
  1231  			if index[1] == nil {
  1232  				p.error(colons[0], "2nd index required in 3-index slice")
  1233  				index[1] = &ast.BadExpr{From: colons[0] + 1, To: colons[1]}
  1234  			}
  1235  			if index[2] == nil {
  1236  				p.error(colons[1], "3rd index required in 3-index slice")
  1237  				index[2] = &ast.BadExpr{From: colons[1] + 1, To: rbrack}
  1238  			}
  1239  		}
  1240  		return &ast.SliceExpr{X: x, Lbrack: lbrack, Low: index[0], High: index[1], Max: index[2], Slice3: slice3, Rbrack: rbrack}
  1241  	}
  1242  
  1243  	return &ast.IndexExpr{X: x, Lbrack: lbrack, Index: index[0], Rbrack: rbrack}
  1244  }
  1245  
  1246  func (p *parser) parseCallOrConversion(fun ast.Expr) *ast.CallExpr {
  1247  	if p.trace {
  1248  		defer un(trace(p, "CallOrConversion"))
  1249  	}
  1250  
  1251  	lparen := p.expect(token.LPAREN)
  1252  	p.exprLev++
  1253  	var list []ast.Expr
  1254  	var ellipsis token.Pos
  1255  	for p.tok != token.RPAREN && p.tok != token.EOF && !ellipsis.IsValid() {
  1256  		list = append(list, p.parseRhsOrType()) // builtins may expect a type: make(some type, ...)
  1257  		if p.tok == token.ELLIPSIS {
  1258  			ellipsis = p.pos
  1259  			p.next()
  1260  		}
  1261  		if !p.atComma("argument list", token.RPAREN) {
  1262  			break
  1263  		}
  1264  		p.next()
  1265  	}
  1266  	p.exprLev--
  1267  	rparen := p.expectClosing(token.RPAREN, "argument list")
  1268  
  1269  	return &ast.CallExpr{Fun: fun, Lparen: lparen, Args: list, Ellipsis: ellipsis, Rparen: rparen}
  1270  }
  1271  
  1272  func (p *parser) parseValue(keyOk bool) ast.Expr {
  1273  	if p.trace {
  1274  		defer un(trace(p, "Element"))
  1275  	}
  1276  
  1277  	if p.tok == token.LBRACE {
  1278  		return p.parseLiteralValue(nil)
  1279  	}
  1280  
  1281  	// Because the parser doesn't know the composite literal type, it cannot
  1282  	// know if a key that's an identifier is a struct field name or a name
  1283  	// denoting a value. The former is not resolved by the parser or the
  1284  	// resolver.
  1285  	//
  1286  	// Instead, _try_ to resolve such a key if possible. If it resolves,
  1287  	// it a) has correctly resolved, or b) incorrectly resolved because
  1288  	// the key is a struct field with a name matching another identifier.
  1289  	// In the former case we are done, and in the latter case we don't
  1290  	// care because the type checker will do a separate field lookup.
  1291  	//
  1292  	// If the key does not resolve, it a) must be defined at the top
  1293  	// level in another file of the same package, the universe scope, or be
  1294  	// undeclared; or b) it is a struct field. In the former case, the type
  1295  	// checker can do a top-level lookup, and in the latter case it will do
  1296  	// a separate field lookup.
  1297  	x := p.checkExpr(p.parseExpr(keyOk))
  1298  	if keyOk {
  1299  		if p.tok == token.COLON {
  1300  			// Try to resolve the key but don't collect it
  1301  			// as unresolved identifier if it fails so that
  1302  			// we don't get (possibly false) errors about
  1303  			// undeclared names.
  1304  			p.tryResolve(x, false)
  1305  		} else {
  1306  			// not a key
  1307  			p.resolve(x)
  1308  		}
  1309  	}
  1310  
  1311  	return x
  1312  }
  1313  
  1314  func (p *parser) parseElement() ast.Expr {
  1315  	if p.trace {
  1316  		defer un(trace(p, "Element"))
  1317  	}
  1318  
  1319  	x := p.parseValue(true)
  1320  	if p.tok == token.COLON {
  1321  		colon := p.pos
  1322  		p.next()
  1323  		x = &ast.KeyValueExpr{Key: x, Colon: colon, Value: p.parseValue(false)}
  1324  	}
  1325  
  1326  	return x
  1327  }
  1328  
  1329  func (p *parser) parseElementList() (list []ast.Expr) {
  1330  	if p.trace {
  1331  		defer un(trace(p, "ElementList"))
  1332  	}
  1333  
  1334  	for p.tok != token.RBRACE && p.tok != token.EOF {
  1335  		list = append(list, p.parseElement())
  1336  		if !p.atComma("composite literal", token.RBRACE) {
  1337  			break
  1338  		}
  1339  		p.next()
  1340  	}
  1341  
  1342  	return
  1343  }
  1344  
  1345  func (p *parser) parseLiteralValue(typ ast.Expr) ast.Expr {
  1346  	if p.trace {
  1347  		defer un(trace(p, "LiteralValue"))
  1348  	}
  1349  
  1350  	lbrace := p.expect(token.LBRACE)
  1351  	var elts []ast.Expr
  1352  	p.exprLev++
  1353  	if p.tok != token.RBRACE {
  1354  		elts = p.parseElementList()
  1355  	}
  1356  	p.exprLev--
  1357  	rbrace := p.expectClosing(token.RBRACE, "composite literal")
  1358  	return &ast.CompositeLit{Type: typ, Lbrace: lbrace, Elts: elts, Rbrace: rbrace}
  1359  }
  1360  
  1361  // checkExpr checks that x is an expression (and not a type).
  1362  func (p *parser) checkExpr(x ast.Expr) ast.Expr {
  1363  	switch unparen(x).(type) {
  1364  	case *ast.BadExpr:
  1365  	case *ast.Ident:
  1366  	case *ast.BasicLit:
  1367  	case *ast.FuncLit:
  1368  	case *ast.CompositeLit:
  1369  	case *ast.ParenExpr:
  1370  		panic("unreachable")
  1371  	case *ast.SelectorExpr:
  1372  	case *ast.IndexExpr:
  1373  	case *ast.SliceExpr:
  1374  	case *ast.TypeAssertExpr:
  1375  		// If t.Type == nil we have a type assertion of the form
  1376  		// y.(type), which is only allowed in type switch expressions.
  1377  		// It's hard to exclude those but for the case where we are in
  1378  		// a type switch. Instead be lenient and test this in the type
  1379  		// checker.
  1380  	case *ast.CallExpr:
  1381  	case *ast.StarExpr:
  1382  	case *ast.UnaryExpr:
  1383  	case *ast.BinaryExpr:
  1384  	default:
  1385  		// all other nodes are not proper expressions
  1386  		p.errorExpected(x.Pos(), "expression")
  1387  		x = &ast.BadExpr{From: x.Pos(), To: p.safePos(x.End())}
  1388  	}
  1389  	return x
  1390  }
  1391  
  1392  // isTypeName reports whether x is a (qualified) TypeName.
  1393  func isTypeName(x ast.Expr) bool {
  1394  	switch t := x.(type) {
  1395  	case *ast.BadExpr:
  1396  	case *ast.Ident:
  1397  	case *ast.SelectorExpr:
  1398  		_, isIdent := t.X.(*ast.Ident)
  1399  		return isIdent
  1400  	default:
  1401  		return false // all other nodes are not type names
  1402  	}
  1403  	return true
  1404  }
  1405  
  1406  // isLiteralType reports whether x is a legal composite literal type.
  1407  func isLiteralType(x ast.Expr) bool {
  1408  	switch t := x.(type) {
  1409  	case *ast.BadExpr:
  1410  	case *ast.Ident:
  1411  	case *ast.SelectorExpr:
  1412  		_, isIdent := t.X.(*ast.Ident)
  1413  		return isIdent
  1414  	case *ast.ArrayType:
  1415  	case *ast.StructType:
  1416  	case *ast.MapType:
  1417  	default:
  1418  		return false // all other nodes are not legal composite literal types
  1419  	}
  1420  	return true
  1421  }
  1422  
  1423  // If x is of the form *T, deref returns T, otherwise it returns x.
  1424  func deref(x ast.Expr) ast.Expr {
  1425  	if p, isPtr := x.(*ast.StarExpr); isPtr {
  1426  		x = p.X
  1427  	}
  1428  	return x
  1429  }
  1430  
  1431  // If x is of the form (T), unparen returns unparen(T), otherwise it returns x.
  1432  func unparen(x ast.Expr) ast.Expr {
  1433  	if p, isParen := x.(*ast.ParenExpr); isParen {
  1434  		x = unparen(p.X)
  1435  	}
  1436  	return x
  1437  }
  1438  
  1439  // checkExprOrType checks that x is an expression or a type
  1440  // (and not a raw type such as [...]T).
  1441  //
  1442  func (p *parser) checkExprOrType(x ast.Expr) ast.Expr {
  1443  	switch t := unparen(x).(type) {
  1444  	case *ast.ParenExpr:
  1445  		panic("unreachable")
  1446  	case *ast.UnaryExpr:
  1447  	case *ast.ArrayType:
  1448  		if len, isEllipsis := t.Len.(*ast.Ellipsis); isEllipsis {
  1449  			p.error(len.Pos(), "expected array length, found '...'")
  1450  			x = &ast.BadExpr{From: x.Pos(), To: p.safePos(x.End())}
  1451  		}
  1452  	}
  1453  
  1454  	// all other nodes are expressions or types
  1455  	return x
  1456  }
  1457  
  1458  // If lhs is set and the result is an identifier, it is not resolved.
  1459  func (p *parser) parsePrimaryExpr(lhs bool) ast.Expr {
  1460  	if p.trace {
  1461  		defer un(trace(p, "PrimaryExpr"))
  1462  	}
  1463  
  1464  	x := p.parseOperand(lhs)
  1465  L:
  1466  	for {
  1467  		switch p.tok {
  1468  		case token.PERIOD:
  1469  			p.next()
  1470  			if lhs {
  1471  				p.resolve(x)
  1472  			}
  1473  			switch p.tok {
  1474  			case token.IDENT:
  1475  				x = p.parseSelector(p.checkExprOrType(x))
  1476  			case token.LPAREN:
  1477  				x = p.parseTypeAssertion(p.checkExpr(x))
  1478  			default:
  1479  				pos := p.pos
  1480  				p.errorExpected(pos, "selector or type assertion")
  1481  				p.next() // make progress
  1482  				sel := &ast.Ident{NamePos: pos, Name: "_"}
  1483  				x = &ast.SelectorExpr{X: x, Sel: sel}
  1484  			}
  1485  		case token.LBRACK:
  1486  			if lhs {
  1487  				p.resolve(x)
  1488  			}
  1489  			x = p.parseIndexOrSlice(p.checkExpr(x))
  1490  		case token.LPAREN:
  1491  			if lhs {
  1492  				p.resolve(x)
  1493  			}
  1494  			x = p.parseCallOrConversion(p.checkExprOrType(x))
  1495  		case token.LBRACE:
  1496  			if isLiteralType(x) && (p.exprLev >= 0 || !isTypeName(x)) {
  1497  				if lhs {
  1498  					p.resolve(x)
  1499  				}
  1500  				x = p.parseLiteralValue(x)
  1501  			} else {
  1502  				break L
  1503  			}
  1504  		default:
  1505  			break L
  1506  		}
  1507  		lhs = false // no need to try to resolve again
  1508  	}
  1509  
  1510  	return x
  1511  }
  1512  
  1513  // If lhs is set and the result is an identifier, it is not resolved.
  1514  func (p *parser) parseUnaryExpr(lhs bool) ast.Expr {
  1515  	if p.trace {
  1516  		defer un(trace(p, "UnaryExpr"))
  1517  	}
  1518  
  1519  	switch p.tok {
  1520  	case token.ADD, token.SUB, token.NOT, token.XOR, token.AND:
  1521  		pos, op := p.pos, p.tok
  1522  		p.next()
  1523  		x := p.parseUnaryExpr(false)
  1524  		return &ast.UnaryExpr{OpPos: pos, Op: op, X: p.checkExpr(x)}
  1525  
  1526  	case token.ARROW:
  1527  		// channel type or receive expression
  1528  		arrow := p.pos
  1529  		p.next()
  1530  
  1531  		// If the next token is token.CHAN we still don't know if it
  1532  		// is a channel type or a receive operation - we only know
  1533  		// once we have found the end of the unary expression. There
  1534  		// are two cases:
  1535  		//
  1536  		//   <- type  => (<-type) must be channel type
  1537  		//   <- expr  => <-(expr) is a receive from an expression
  1538  		//
  1539  		// In the first case, the arrow must be re-associated with
  1540  		// the channel type parsed already:
  1541  		//
  1542  		//   <- (chan type)    =>  (<-chan type)
  1543  		//   <- (chan<- type)  =>  (<-chan (<-type))
  1544  
  1545  		x := p.parseUnaryExpr(false)
  1546  
  1547  		// determine which case we have
  1548  		if typ, ok := x.(*ast.ChanType); ok {
  1549  			// (<-type)
  1550  
  1551  			// re-associate position info and <-
  1552  			dir := ast.SEND
  1553  			for ok && dir == ast.SEND {
  1554  				if typ.Dir == ast.RECV {
  1555  					// error: (<-type) is (<-(<-chan T))
  1556  					p.errorExpected(typ.Arrow, "'chan'")
  1557  				}
  1558  				arrow, typ.Begin, typ.Arrow = typ.Arrow, arrow, arrow
  1559  				dir, typ.Dir = typ.Dir, ast.RECV
  1560  				typ, ok = typ.Value.(*ast.ChanType)
  1561  			}
  1562  			if dir == ast.SEND {
  1563  				p.errorExpected(arrow, "channel type")
  1564  			}
  1565  
  1566  			return x
  1567  		}
  1568  
  1569  		// <-(expr)
  1570  		return &ast.UnaryExpr{OpPos: arrow, Op: token.ARROW, X: p.checkExpr(x)}
  1571  
  1572  	case token.MUL:
  1573  		// pointer type or unary "*" expression
  1574  		pos := p.pos
  1575  		p.next()
  1576  		x := p.parseUnaryExpr(false)
  1577  		return &ast.StarExpr{Star: pos, X: p.checkExprOrType(x)}
  1578  	}
  1579  
  1580  	return p.parsePrimaryExpr(lhs)
  1581  }
  1582  
  1583  func (p *parser) tokPrec() (token.Token, int) {
  1584  	tok := p.tok
  1585  	if p.inRhs && tok == token.ASSIGN {
  1586  		tok = token.EQL
  1587  	}
  1588  	return tok, tok.Precedence()
  1589  }
  1590  
  1591  // If lhs is set and the result is an identifier, it is not resolved.
  1592  func (p *parser) parseBinaryExpr(lhs bool, prec1 int) ast.Expr {
  1593  	if p.trace {
  1594  		defer un(trace(p, "BinaryExpr"))
  1595  	}
  1596  
  1597  	x := p.parseUnaryExpr(lhs)
  1598  	for _, prec := p.tokPrec(); prec >= prec1; prec-- {
  1599  		for {
  1600  			op, oprec := p.tokPrec()
  1601  			if oprec != prec {
  1602  				break
  1603  			}
  1604  			pos := p.expect(op)
  1605  			if lhs {
  1606  				p.resolve(x)
  1607  				lhs = false
  1608  			}
  1609  			y := p.parseBinaryExpr(false, prec+1)
  1610  			x = &ast.BinaryExpr{X: p.checkExpr(x), OpPos: pos, Op: op, Y: p.checkExpr(y)}
  1611  		}
  1612  	}
  1613  
  1614  	return x
  1615  }
  1616  
  1617  // If lhs is set and the result is an identifier, it is not resolved.
  1618  // The result may be a type or even a raw type ([...]int). Callers must
  1619  // check the result (using checkExpr or checkExprOrType), depending on
  1620  // context.
  1621  func (p *parser) parseExpr(lhs bool) ast.Expr {
  1622  	if p.trace {
  1623  		defer un(trace(p, "Expression"))
  1624  	}
  1625  
  1626  	return p.parseBinaryExpr(lhs, token.LowestPrec+1)
  1627  }
  1628  
  1629  func (p *parser) parseRhs() ast.Expr {
  1630  	old := p.inRhs
  1631  	p.inRhs = true
  1632  	x := p.checkExpr(p.parseExpr(false))
  1633  	p.inRhs = old
  1634  	return x
  1635  }
  1636  
  1637  func (p *parser) parseRhsOrType() ast.Expr {
  1638  	old := p.inRhs
  1639  	p.inRhs = true
  1640  	x := p.checkExprOrType(p.parseExpr(false))
  1641  	p.inRhs = old
  1642  	return x
  1643  }
  1644  
  1645  // ----------------------------------------------------------------------------
  1646  // Statements
  1647  
  1648  // Parsing modes for parseSimpleStmt.
  1649  const (
  1650  	basic = iota
  1651  	labelOk
  1652  	rangeOk
  1653  )
  1654  
  1655  // parseSimpleStmt returns true as 2nd result if it parsed the assignment
  1656  // of a range clause (with mode == rangeOk). The returned statement is an
  1657  // assignment with a right-hand side that is a single unary expression of
  1658  // the form "range x". No guarantees are given for the left-hand side.
  1659  func (p *parser) parseSimpleStmt(mode int) (ast.Stmt, bool) {
  1660  	if p.trace {
  1661  		defer un(trace(p, "SimpleStmt"))
  1662  	}
  1663  
  1664  	x := p.parseLhsList()
  1665  
  1666  	switch p.tok {
  1667  	case
  1668  		token.DEFINE, token.ASSIGN, token.ADD_ASSIGN,
  1669  		token.SUB_ASSIGN, token.MUL_ASSIGN, token.QUO_ASSIGN,
  1670  		token.REM_ASSIGN, token.AND_ASSIGN, token.OR_ASSIGN,
  1671  		token.XOR_ASSIGN, token.SHL_ASSIGN, token.SHR_ASSIGN, token.AND_NOT_ASSIGN:
  1672  		// assignment statement, possibly part of a range clause
  1673  		pos, tok := p.pos, p.tok
  1674  		p.next()
  1675  		var y []ast.Expr
  1676  		isRange := false
  1677  		if mode == rangeOk && p.tok == token.RANGE && (tok == token.DEFINE || tok == token.ASSIGN) {
  1678  			pos := p.pos
  1679  			p.next()
  1680  			y = []ast.Expr{&ast.UnaryExpr{OpPos: pos, Op: token.RANGE, X: p.parseRhs()}}
  1681  			isRange = true
  1682  		} else {
  1683  			y = p.parseRhsList()
  1684  		}
  1685  		as := &ast.AssignStmt{Lhs: x, TokPos: pos, Tok: tok, Rhs: y}
  1686  		if tok == token.DEFINE {
  1687  			p.shortVarDecl(as, x)
  1688  		}
  1689  		return as, isRange
  1690  	}
  1691  
  1692  	if len(x) > 1 {
  1693  		p.errorExpected(x[0].Pos(), "1 expression")
  1694  		// continue with first expression
  1695  	}
  1696  
  1697  	switch p.tok {
  1698  	case token.COLON:
  1699  		// labeled statement
  1700  		colon := p.pos
  1701  		p.next()
  1702  		if label, isIdent := x[0].(*ast.Ident); mode == labelOk && isIdent {
  1703  			// Go spec: The scope of a label is the body of the function
  1704  			// in which it is declared and excludes the body of any nested
  1705  			// function.
  1706  			stmt := &ast.LabeledStmt{Label: label, Colon: colon, Stmt: p.parseStmt()}
  1707  			p.declare(stmt, nil, p.labelScope, ast.Lbl, label)
  1708  			return stmt, false
  1709  		}
  1710  		// The label declaration typically starts at x[0].Pos(), but the label
  1711  		// declaration may be erroneous due to a token after that position (and
  1712  		// before the ':'). If SpuriousErrors is not set, the (only) error re-
  1713  		// ported for the line is the illegal label error instead of the token
  1714  		// before the ':' that caused the problem. Thus, use the (latest) colon
  1715  		// position for error reporting.
  1716  		p.error(colon, "illegal label declaration")
  1717  		return &ast.BadStmt{From: x[0].Pos(), To: colon + 1}, false
  1718  
  1719  	case token.ARROW:
  1720  		// send statement
  1721  		arrow := p.pos
  1722  		p.next()
  1723  		y := p.parseRhs()
  1724  		return &ast.SendStmt{Chan: x[0], Arrow: arrow, Value: y}, false
  1725  
  1726  	case token.INC, token.DEC:
  1727  		// increment or decrement
  1728  		s := &ast.IncDecStmt{X: x[0], TokPos: p.pos, Tok: p.tok}
  1729  		p.next()
  1730  		return s, false
  1731  	}
  1732  
  1733  	// expression
  1734  	return &ast.ExprStmt{X: x[0]}, false
  1735  }
  1736  
  1737  func (p *parser) parseCallExpr(callType string) *ast.CallExpr {
  1738  	x := p.parseRhsOrType() // could be a conversion: (some type)(x)
  1739  	if call, isCall := x.(*ast.CallExpr); isCall {
  1740  		return call
  1741  	}
  1742  	if _, isBad := x.(*ast.BadExpr); !isBad {
  1743  		// only report error if it's a new one
  1744  		p.error(p.safePos(x.End()), fmt.Sprintf("function must be invoked in %s statement", callType))
  1745  	}
  1746  	return nil
  1747  }
  1748  
  1749  func (p *parser) parseGoStmt() ast.Stmt {
  1750  	if p.trace {
  1751  		defer un(trace(p, "GoStmt"))
  1752  	}
  1753  
  1754  	pos := p.expect(token.GO)
  1755  	call := p.parseCallExpr("go")
  1756  	p.expectSemi()
  1757  	if call == nil {
  1758  		return &ast.BadStmt{From: pos, To: pos + 2} // len("go")
  1759  	}
  1760  
  1761  	return &ast.GoStmt{Go: pos, Call: call}
  1762  }
  1763  
  1764  func (p *parser) parseDeferStmt() ast.Stmt {
  1765  	if p.trace {
  1766  		defer un(trace(p, "DeferStmt"))
  1767  	}
  1768  
  1769  	pos := p.expect(token.DEFER)
  1770  	call := p.parseCallExpr("defer")
  1771  	p.expectSemi()
  1772  	if call == nil {
  1773  		return &ast.BadStmt{From: pos, To: pos + 5} // len("defer")
  1774  	}
  1775  
  1776  	return &ast.DeferStmt{Defer: pos, Call: call}
  1777  }
  1778  
  1779  func (p *parser) parseReturnStmt() *ast.ReturnStmt {
  1780  	if p.trace {
  1781  		defer un(trace(p, "ReturnStmt"))
  1782  	}
  1783  
  1784  	pos := p.pos
  1785  	p.expect(token.RETURN)
  1786  	var x []ast.Expr
  1787  	if p.tok != token.SEMICOLON && p.tok != token.RBRACE {
  1788  		x = p.parseRhsList()
  1789  	}
  1790  	p.expectSemi()
  1791  
  1792  	return &ast.ReturnStmt{Return: pos, Results: x}
  1793  }
  1794  
  1795  func (p *parser) parseBranchStmt(tok token.Token) *ast.BranchStmt {
  1796  	if p.trace {
  1797  		defer un(trace(p, "BranchStmt"))
  1798  	}
  1799  
  1800  	pos := p.expect(tok)
  1801  	var label *ast.Ident
  1802  	if tok != token.FALLTHROUGH && p.tok == token.IDENT {
  1803  		label = p.parseIdent()
  1804  		// add to list of unresolved targets
  1805  		n := len(p.targetStack) - 1
  1806  		p.targetStack[n] = append(p.targetStack[n], label)
  1807  	}
  1808  	p.expectSemi()
  1809  
  1810  	return &ast.BranchStmt{TokPos: pos, Tok: tok, Label: label}
  1811  }
  1812  
  1813  func (p *parser) makeExpr(s ast.Stmt, kind string) ast.Expr {
  1814  	if s == nil {
  1815  		return nil
  1816  	}
  1817  	if es, isExpr := s.(*ast.ExprStmt); isExpr {
  1818  		return p.checkExpr(es.X)
  1819  	}
  1820  	p.error(s.Pos(), fmt.Sprintf("expected %s, found simple statement (missing parentheses around composite literal?)", kind))
  1821  	return &ast.BadExpr{From: s.Pos(), To: p.safePos(s.End())}
  1822  }
  1823  
  1824  func (p *parser) parseIfStmt() *ast.IfStmt {
  1825  	if p.trace {
  1826  		defer un(trace(p, "IfStmt"))
  1827  	}
  1828  
  1829  	pos := p.expect(token.IF)
  1830  	p.openScope()
  1831  	defer p.closeScope()
  1832  
  1833  	var s ast.Stmt
  1834  	var x ast.Expr
  1835  	{
  1836  		prevLev := p.exprLev
  1837  		p.exprLev = -1
  1838  		if p.tok == token.SEMICOLON {
  1839  			p.next()
  1840  			x = p.parseRhs()
  1841  		} else {
  1842  			s, _ = p.parseSimpleStmt(basic)
  1843  			if p.tok == token.SEMICOLON {
  1844  				p.next()
  1845  				x = p.parseRhs()
  1846  			} else {
  1847  				x = p.makeExpr(s, "boolean expression")
  1848  				s = nil
  1849  			}
  1850  		}
  1851  		p.exprLev = prevLev
  1852  	}
  1853  
  1854  	body := p.parseBlockStmt()
  1855  	var else_ ast.Stmt
  1856  	if p.tok == token.ELSE {
  1857  		p.next()
  1858  		else_ = p.parseStmt()
  1859  	} else {
  1860  		p.expectSemi()
  1861  	}
  1862  
  1863  	return &ast.IfStmt{If: pos, Init: s, Cond: x, Body: body, Else: else_}
  1864  }
  1865  
  1866  func (p *parser) parseTypeList() (list []ast.Expr) {
  1867  	if p.trace {
  1868  		defer un(trace(p, "TypeList"))
  1869  	}
  1870  
  1871  	list = append(list, p.parseType())
  1872  	for p.tok == token.COMMA {
  1873  		p.next()
  1874  		list = append(list, p.parseType())
  1875  	}
  1876  
  1877  	return
  1878  }
  1879  
  1880  func (p *parser) parseCaseClause(typeSwitch bool) *ast.CaseClause {
  1881  	if p.trace {
  1882  		defer un(trace(p, "CaseClause"))
  1883  	}
  1884  
  1885  	pos := p.pos
  1886  	var list []ast.Expr
  1887  	if p.tok == token.CASE {
  1888  		p.next()
  1889  		if typeSwitch {
  1890  			list = p.parseTypeList()
  1891  		} else {
  1892  			list = p.parseRhsList()
  1893  		}
  1894  	} else {
  1895  		p.expect(token.DEFAULT)
  1896  	}
  1897  
  1898  	colon := p.expect(token.COLON)
  1899  	p.openScope()
  1900  	body := p.parseStmtList()
  1901  	p.closeScope()
  1902  
  1903  	return &ast.CaseClause{Case: pos, List: list, Colon: colon, Body: body}
  1904  }
  1905  
  1906  func isTypeSwitchAssert(x ast.Expr) bool {
  1907  	a, ok := x.(*ast.TypeAssertExpr)
  1908  	return ok && a.Type == nil
  1909  }
  1910  
  1911  func isTypeSwitchGuard(s ast.Stmt) bool {
  1912  	switch t := s.(type) {
  1913  	case *ast.ExprStmt:
  1914  		// x.(nil)
  1915  		return isTypeSwitchAssert(t.X)
  1916  	case *ast.AssignStmt:
  1917  		// v := x.(nil)
  1918  		return len(t.Lhs) == 1 && t.Tok == token.DEFINE && len(t.Rhs) == 1 && isTypeSwitchAssert(t.Rhs[0])
  1919  	}
  1920  	return false
  1921  }
  1922  
  1923  func (p *parser) parseSwitchStmt() ast.Stmt {
  1924  	if p.trace {
  1925  		defer un(trace(p, "SwitchStmt"))
  1926  	}
  1927  
  1928  	pos := p.expect(token.SWITCH)
  1929  	p.openScope()
  1930  	defer p.closeScope()
  1931  
  1932  	var s1, s2 ast.Stmt
  1933  	if p.tok != token.LBRACE {
  1934  		prevLev := p.exprLev
  1935  		p.exprLev = -1
  1936  		if p.tok != token.SEMICOLON {
  1937  			s2, _ = p.parseSimpleStmt(basic)
  1938  		}
  1939  		if p.tok == token.SEMICOLON {
  1940  			p.next()
  1941  			s1 = s2
  1942  			s2 = nil
  1943  			if p.tok != token.LBRACE {
  1944  				// A TypeSwitchGuard may declare a variable in addition
  1945  				// to the variable declared in the initial SimpleStmt.
  1946  				// Introduce extra scope to avoid redeclaration errors:
  1947  				//
  1948  				//	switch t := 0; t := x.(T) { ... }
  1949  				//
  1950  				// (this code is not valid Go because the first t
  1951  				// cannot be accessed and thus is never used, the extra
  1952  				// scope is needed for the correct error message).
  1953  				//
  1954  				// If we don't have a type switch, s2 must be an expression.
  1955  				// Having the extra nested but empty scope won't affect it.
  1956  				p.openScope()
  1957  				defer p.closeScope()
  1958  				s2, _ = p.parseSimpleStmt(basic)
  1959  			}
  1960  		}
  1961  		p.exprLev = prevLev
  1962  	}
  1963  
  1964  	typeSwitch := isTypeSwitchGuard(s2)
  1965  	lbrace := p.expect(token.LBRACE)
  1966  	var list []ast.Stmt
  1967  	for p.tok == token.CASE || p.tok == token.DEFAULT {
  1968  		list = append(list, p.parseCaseClause(typeSwitch))
  1969  	}
  1970  	rbrace := p.expect(token.RBRACE)
  1971  	p.expectSemi()
  1972  	body := &ast.BlockStmt{Lbrace: lbrace, List: list, Rbrace: rbrace}
  1973  
  1974  	if typeSwitch {
  1975  		return &ast.TypeSwitchStmt{Switch: pos, Init: s1, Assign: s2, Body: body}
  1976  	}
  1977  
  1978  	return &ast.SwitchStmt{Switch: pos, Init: s1, Tag: p.makeExpr(s2, "switch expression"), Body: body}
  1979  }
  1980  
  1981  func (p *parser) parseCommClause() *ast.CommClause {
  1982  	if p.trace {
  1983  		defer un(trace(p, "CommClause"))
  1984  	}
  1985  
  1986  	p.openScope()
  1987  	pos := p.pos
  1988  	var comm ast.Stmt
  1989  	if p.tok == token.CASE {
  1990  		p.next()
  1991  		lhs := p.parseLhsList()
  1992  		if p.tok == token.ARROW {
  1993  			// SendStmt
  1994  			if len(lhs) > 1 {
  1995  				p.errorExpected(lhs[0].Pos(), "1 expression")
  1996  				// continue with first expression
  1997  			}
  1998  			arrow := p.pos
  1999  			p.next()
  2000  			rhs := p.parseRhs()
  2001  			comm = &ast.SendStmt{Chan: lhs[0], Arrow: arrow, Value: rhs}
  2002  		} else {
  2003  			// RecvStmt
  2004  			if tok := p.tok; tok == token.ASSIGN || tok == token.DEFINE {
  2005  				// RecvStmt with assignment
  2006  				if len(lhs) > 2 {
  2007  					p.errorExpected(lhs[0].Pos(), "1 or 2 expressions")
  2008  					// continue with first two expressions
  2009  					lhs = lhs[0:2]
  2010  				}
  2011  				pos := p.pos
  2012  				p.next()
  2013  				rhs := p.parseRhs()
  2014  				as := &ast.AssignStmt{Lhs: lhs, TokPos: pos, Tok: tok, Rhs: []ast.Expr{rhs}}
  2015  				if tok == token.DEFINE {
  2016  					p.shortVarDecl(as, lhs)
  2017  				}
  2018  				comm = as
  2019  			} else {
  2020  				// lhs must be single receive operation
  2021  				if len(lhs) > 1 {
  2022  					p.errorExpected(lhs[0].Pos(), "1 expression")
  2023  					// continue with first expression
  2024  				}
  2025  				comm = &ast.ExprStmt{X: lhs[0]}
  2026  			}
  2027  		}
  2028  	} else {
  2029  		p.expect(token.DEFAULT)
  2030  	}
  2031  
  2032  	colon := p.expect(token.COLON)
  2033  	body := p.parseStmtList()
  2034  	p.closeScope()
  2035  
  2036  	return &ast.CommClause{Case: pos, Comm: comm, Colon: colon, Body: body}
  2037  }
  2038  
  2039  func (p *parser) parseSelectStmt() *ast.SelectStmt {
  2040  	if p.trace {
  2041  		defer un(trace(p, "SelectStmt"))
  2042  	}
  2043  
  2044  	pos := p.expect(token.SELECT)
  2045  	lbrace := p.expect(token.LBRACE)
  2046  	var list []ast.Stmt
  2047  	for p.tok == token.CASE || p.tok == token.DEFAULT {
  2048  		list = append(list, p.parseCommClause())
  2049  	}
  2050  	rbrace := p.expect(token.RBRACE)
  2051  	p.expectSemi()
  2052  	body := &ast.BlockStmt{Lbrace: lbrace, List: list, Rbrace: rbrace}
  2053  
  2054  	return &ast.SelectStmt{Select: pos, Body: body}
  2055  }
  2056  
  2057  func (p *parser) parseForStmt() ast.Stmt {
  2058  	if p.trace {
  2059  		defer un(trace(p, "ForStmt"))
  2060  	}
  2061  
  2062  	pos := p.expect(token.FOR)
  2063  	p.openScope()
  2064  	defer p.closeScope()
  2065  
  2066  	var s1, s2, s3 ast.Stmt
  2067  	var isRange bool
  2068  	if p.tok != token.LBRACE {
  2069  		prevLev := p.exprLev
  2070  		p.exprLev = -1
  2071  		if p.tok != token.SEMICOLON {
  2072  			if p.tok == token.RANGE {
  2073  				// "for range x" (nil lhs in assignment)
  2074  				pos := p.pos
  2075  				p.next()
  2076  				y := []ast.Expr{&ast.UnaryExpr{OpPos: pos, Op: token.RANGE, X: p.parseRhs()}}
  2077  				s2 = &ast.AssignStmt{Rhs: y}
  2078  				isRange = true
  2079  			} else {
  2080  				s2, isRange = p.parseSimpleStmt(rangeOk)
  2081  			}
  2082  		}
  2083  		if !isRange && p.tok == token.SEMICOLON {
  2084  			p.next()
  2085  			s1 = s2
  2086  			s2 = nil
  2087  			if p.tok != token.SEMICOLON {
  2088  				s2, _ = p.parseSimpleStmt(basic)
  2089  			}
  2090  			p.expectSemi()
  2091  			if p.tok != token.LBRACE {
  2092  				s3, _ = p.parseSimpleStmt(basic)
  2093  			}
  2094  		}
  2095  		p.exprLev = prevLev
  2096  	}
  2097  
  2098  	body := p.parseBlockStmt()
  2099  	p.expectSemi()
  2100  
  2101  	if isRange {
  2102  		as := s2.(*ast.AssignStmt)
  2103  		// check lhs
  2104  		var key, value ast.Expr
  2105  		switch len(as.Lhs) {
  2106  		case 0:
  2107  			// nothing to do
  2108  		case 1:
  2109  			key = as.Lhs[0]
  2110  		case 2:
  2111  			key, value = as.Lhs[0], as.Lhs[1]
  2112  		default:
  2113  			p.errorExpected(as.Lhs[len(as.Lhs)-1].Pos(), "at most 2 expressions")
  2114  			return &ast.BadStmt{From: pos, To: p.safePos(body.End())}
  2115  		}
  2116  		// parseSimpleStmt returned a right-hand side that
  2117  		// is a single unary expression of the form "range x"
  2118  		x := as.Rhs[0].(*ast.UnaryExpr).X
  2119  		return &ast.RangeStmt{
  2120  			For:    pos,
  2121  			Key:    key,
  2122  			Value:  value,
  2123  			TokPos: as.TokPos,
  2124  			Tok:    as.Tok,
  2125  			X:      x,
  2126  			Body:   body,
  2127  		}
  2128  	}
  2129  
  2130  	// regular for statement
  2131  	return &ast.ForStmt{
  2132  		For:  pos,
  2133  		Init: s1,
  2134  		Cond: p.makeExpr(s2, "boolean or range expression"),
  2135  		Post: s3,
  2136  		Body: body,
  2137  	}
  2138  }
  2139  
  2140  func (p *parser) parseStmt() (s ast.Stmt) {
  2141  	if p.trace {
  2142  		defer un(trace(p, "Statement"))
  2143  	}
  2144  
  2145  	switch p.tok {
  2146  	case token.CONST, token.TYPE, token.VAR:
  2147  		s = &ast.DeclStmt{Decl: p.parseDecl(syncStmt)}
  2148  	case
  2149  		// tokens that may start an expression
  2150  		token.IDENT, token.INT, token.FLOAT, token.IMAG, token.CHAR, token.STRING, token.FUNC, token.LPAREN, // operands
  2151  		token.LBRACK, token.STRUCT, token.MAP, token.CHAN, token.INTERFACE, // composite types
  2152  		token.ADD, token.SUB, token.MUL, token.AND, token.XOR, token.ARROW, token.NOT: // unary operators
  2153  		s, _ = p.parseSimpleStmt(labelOk)
  2154  		// because of the required look-ahead, labeled statements are
  2155  		// parsed by parseSimpleStmt - don't expect a semicolon after
  2156  		// them
  2157  		if _, isLabeledStmt := s.(*ast.LabeledStmt); !isLabeledStmt {
  2158  			p.expectSemi()
  2159  		}
  2160  	case token.GO:
  2161  		s = p.parseGoStmt()
  2162  	case token.DEFER:
  2163  		s = p.parseDeferStmt()
  2164  	case token.RETURN:
  2165  		s = p.parseReturnStmt()
  2166  	case token.BREAK, token.CONTINUE, token.GOTO, token.FALLTHROUGH:
  2167  		s = p.parseBranchStmt(p.tok)
  2168  	case token.LBRACE:
  2169  		s = p.parseBlockStmt()
  2170  		p.expectSemi()
  2171  	case token.IF:
  2172  		s = p.parseIfStmt()
  2173  	case token.SWITCH:
  2174  		s = p.parseSwitchStmt()
  2175  	case token.SELECT:
  2176  		s = p.parseSelectStmt()
  2177  	case token.FOR:
  2178  		s = p.parseForStmt()
  2179  	case token.SEMICOLON:
  2180  		// Is it ever possible to have an implicit semicolon
  2181  		// producing an empty statement in a valid program?
  2182  		// (handle correctly anyway)
  2183  		s = &ast.EmptyStmt{Semicolon: p.pos, Implicit: p.lit == "\n"}
  2184  		p.next()
  2185  	case token.RBRACE:
  2186  		// a semicolon may be omitted before a closing "}"
  2187  		s = &ast.EmptyStmt{Semicolon: p.pos, Implicit: true}
  2188  	default:
  2189  		// no statement found
  2190  		pos := p.pos
  2191  		p.errorExpected(pos, "statement")
  2192  		syncStmt(p)
  2193  		s = &ast.BadStmt{From: pos, To: p.pos}
  2194  	}
  2195  
  2196  	return
  2197  }
  2198  
  2199  // ----------------------------------------------------------------------------
  2200  // Declarations
  2201  
  2202  type parseSpecFunction func(doc *ast.CommentGroup, keyword token.Token, iota int) ast.Spec
  2203  
  2204  func isValidImport(lit string) bool {
  2205  	const illegalChars = `!"#$%&'()*,:;<=>?[\]^{|}` + "`\uFFFD"
  2206  	s, _ := strconv.Unquote(lit) // go/scanner returns a legal string literal
  2207  	for _, r := range s {
  2208  		if !unicode.IsGraphic(r) || unicode.IsSpace(r) || strings.ContainsRune(illegalChars, r) {
  2209  			return false
  2210  		}
  2211  	}
  2212  	return s != ""
  2213  }
  2214  
  2215  func (p *parser) parseImportSpec(doc *ast.CommentGroup, _ token.Token, _ int) ast.Spec {
  2216  	if p.trace {
  2217  		defer un(trace(p, "ImportSpec"))
  2218  	}
  2219  
  2220  	var ident *ast.Ident
  2221  	switch p.tok {
  2222  	case token.PERIOD:
  2223  		ident = &ast.Ident{NamePos: p.pos, Name: "."}
  2224  		p.next()
  2225  	case token.IDENT:
  2226  		ident = p.parseIdent()
  2227  	}
  2228  
  2229  	pos := p.pos
  2230  	var path string
  2231  	if p.tok == token.STRING {
  2232  		path = p.lit
  2233  		if !isValidImport(path) {
  2234  			p.error(pos, "invalid import path: "+path)
  2235  		}
  2236  		p.next()
  2237  	} else {
  2238  		p.expect(token.STRING) // use expect() error handling
  2239  	}
  2240  	p.expectSemi() // call before accessing p.linecomment
  2241  
  2242  	// collect imports
  2243  	spec := &ast.ImportSpec{
  2244  		Doc:     doc,
  2245  		Name:    ident,
  2246  		Path:    &ast.BasicLit{ValuePos: pos, Kind: token.STRING, Value: path},
  2247  		Comment: p.lineComment,
  2248  	}
  2249  	p.imports = append(p.imports, spec)
  2250  
  2251  	return spec
  2252  }
  2253  
  2254  func (p *parser) parseValueSpec(doc *ast.CommentGroup, keyword token.Token, iota int) ast.Spec {
  2255  	if p.trace {
  2256  		defer un(trace(p, keyword.String()+"Spec"))
  2257  	}
  2258  
  2259  	pos := p.pos
  2260  	idents := p.parseIdentList()
  2261  	typ := p.tryType()
  2262  	var values []ast.Expr
  2263  	// always permit optional initialization for more tolerant parsing
  2264  	if p.tok == token.ASSIGN {
  2265  		p.next()
  2266  		values = p.parseRhsList()
  2267  	}
  2268  	p.expectSemi() // call before accessing p.linecomment
  2269  
  2270  	switch keyword {
  2271  	case token.VAR:
  2272  		if typ == nil && values == nil {
  2273  			p.error(pos, "missing variable type or initialization")
  2274  		}
  2275  	case token.CONST:
  2276  		if values == nil && (iota == 0 || typ != nil) {
  2277  			p.error(pos, "missing constant value")
  2278  		}
  2279  	}
  2280  
  2281  	// Go spec: The scope of a constant or variable identifier declared inside
  2282  	// a function begins at the end of the ConstSpec or VarSpec and ends at
  2283  	// the end of the innermost containing block.
  2284  	// (Global identifiers are resolved in a separate phase after parsing.)
  2285  	spec := &ast.ValueSpec{
  2286  		Doc:     doc,
  2287  		Names:   idents,
  2288  		Type:    typ,
  2289  		Values:  values,
  2290  		Comment: p.lineComment,
  2291  	}
  2292  	kind := ast.Con
  2293  	if keyword == token.VAR {
  2294  		kind = ast.Var
  2295  	}
  2296  	p.declare(spec, iota, p.topScope, kind, idents...)
  2297  
  2298  	return spec
  2299  }
  2300  
  2301  func (p *parser) parseTypeSpec(doc *ast.CommentGroup, _ token.Token, _ int) ast.Spec {
  2302  	if p.trace {
  2303  		defer un(trace(p, "TypeSpec"))
  2304  	}
  2305  
  2306  	ident := p.parseIdent()
  2307  
  2308  	// Go spec: The scope of a type identifier declared inside a function begins
  2309  	// at the identifier in the TypeSpec and ends at the end of the innermost
  2310  	// containing block.
  2311  	// (Global identifiers are resolved in a separate phase after parsing.)
  2312  	spec := &ast.TypeSpec{Doc: doc, Name: ident}
  2313  	p.declare(spec, nil, p.topScope, ast.Typ, ident)
  2314  
  2315  	spec.Type = p.parseType()
  2316  	p.expectSemi() // call before accessing p.linecomment
  2317  	spec.Comment = p.lineComment
  2318  
  2319  	return spec
  2320  }
  2321  
  2322  func (p *parser) parseGenDecl(keyword token.Token, f parseSpecFunction) *ast.GenDecl {
  2323  	if p.trace {
  2324  		defer un(trace(p, "GenDecl("+keyword.String()+")"))
  2325  	}
  2326  
  2327  	doc := p.leadComment
  2328  	pos := p.expect(keyword)
  2329  	var lparen, rparen token.Pos
  2330  	var list []ast.Spec
  2331  	if p.tok == token.LPAREN {
  2332  		lparen = p.pos
  2333  		p.next()
  2334  		for iota := 0; p.tok != token.RPAREN && p.tok != token.EOF; iota++ {
  2335  			list = append(list, f(p.leadComment, keyword, iota))
  2336  		}
  2337  		rparen = p.expect(token.RPAREN)
  2338  		p.expectSemi()
  2339  	} else {
  2340  		list = append(list, f(nil, keyword, 0))
  2341  	}
  2342  
  2343  	return &ast.GenDecl{
  2344  		Doc:    doc,
  2345  		TokPos: pos,
  2346  		Tok:    keyword,
  2347  		Lparen: lparen,
  2348  		Specs:  list,
  2349  		Rparen: rparen,
  2350  	}
  2351  }
  2352  
  2353  func (p *parser) parseFuncDecl() *ast.FuncDecl {
  2354  	if p.trace {
  2355  		defer un(trace(p, "FunctionDecl"))
  2356  	}
  2357  
  2358  	doc := p.leadComment
  2359  	pos := p.expect(token.FUNC)
  2360  	scope := ast.NewScope(p.topScope) // function scope
  2361  
  2362  	var recv *ast.FieldList
  2363  	if p.tok == token.LPAREN {
  2364  		recv = p.parseParameters(scope, false)
  2365  	}
  2366  
  2367  	ident := p.parseIdent()
  2368  
  2369  	params, results := p.parseSignature(scope)
  2370  
  2371  	var body *ast.BlockStmt
  2372  	if p.tok == token.LBRACE {
  2373  		body = p.parseBody(scope)
  2374  	}
  2375  	p.expectSemi()
  2376  
  2377  	decl := &ast.FuncDecl{
  2378  		Doc:  doc,
  2379  		Recv: recv,
  2380  		Name: ident,
  2381  		Type: &ast.FuncType{
  2382  			Func:    pos,
  2383  			Params:  params,
  2384  			Results: results,
  2385  		},
  2386  		Body: body,
  2387  	}
  2388  	if recv == nil {
  2389  		// Go spec: The scope of an identifier denoting a constant, type,
  2390  		// variable, or function (but not method) declared at top level
  2391  		// (outside any function) is the package block.
  2392  		//
  2393  		// init() functions cannot be referred to and there may
  2394  		// be more than one - don't put them in the pkgScope
  2395  		if ident.Name != "init" {
  2396  			p.declare(decl, nil, p.pkgScope, ast.Fun, ident)
  2397  		}
  2398  	}
  2399  
  2400  	return decl
  2401  }
  2402  
  2403  func (p *parser) parseDecl(sync func(*parser)) ast.Decl {
  2404  	if p.trace {
  2405  		defer un(trace(p, "Declaration"))
  2406  	}
  2407  
  2408  	var f parseSpecFunction
  2409  	switch p.tok {
  2410  	case token.CONST, token.VAR:
  2411  		f = p.parseValueSpec
  2412  
  2413  	case token.TYPE:
  2414  		f = p.parseTypeSpec
  2415  
  2416  	case token.FUNC:
  2417  		return p.parseFuncDecl()
  2418  
  2419  	default:
  2420  		pos := p.pos
  2421  		p.errorExpected(pos, "declaration")
  2422  		sync(p)
  2423  		return &ast.BadDecl{From: pos, To: p.pos}
  2424  	}
  2425  
  2426  	return p.parseGenDecl(p.tok, f)
  2427  }
  2428  
  2429  // ----------------------------------------------------------------------------
  2430  // Source files
  2431  
  2432  func (p *parser) parseFile() *ast.File {
  2433  	if p.trace {
  2434  		defer un(trace(p, "File"))
  2435  	}
  2436  
  2437  	// Don't bother parsing the rest if we had errors scanning the first token.
  2438  	// Likely not a Go source file at all.
  2439  	if p.errors.Len() != 0 {
  2440  		return nil
  2441  	}
  2442  
  2443  	// package clause
  2444  	doc := p.leadComment
  2445  	pos := p.expect(token.PACKAGE)
  2446  	// Go spec: The package clause is not a declaration;
  2447  	// the package name does not appear in any scope.
  2448  	ident := p.parseIdent()
  2449  	if ident.Name == "_" && p.mode&DeclarationErrors != 0 {
  2450  		p.error(p.pos, "invalid package name _")
  2451  	}
  2452  	p.expectSemi()
  2453  
  2454  	// Don't bother parsing the rest if we had errors parsing the package clause.
  2455  	// Likely not a Go source file at all.
  2456  	if p.errors.Len() != 0 {
  2457  		return nil
  2458  	}
  2459  
  2460  	p.openScope()
  2461  	p.pkgScope = p.topScope
  2462  	var decls []ast.Decl
  2463  	if p.mode&PackageClauseOnly == 0 {
  2464  		// import decls
  2465  		for p.tok == token.IMPORT {
  2466  			decls = append(decls, p.parseGenDecl(token.IMPORT, p.parseImportSpec))
  2467  		}
  2468  
  2469  		if p.mode&ImportsOnly == 0 {
  2470  			// rest of package body
  2471  			for p.tok != token.EOF {
  2472  				decls = append(decls, p.parseDecl(syncDecl))
  2473  			}
  2474  		}
  2475  	}
  2476  	p.closeScope()
  2477  	assert(p.topScope == nil, "unbalanced scopes")
  2478  	assert(p.labelScope == nil, "unbalanced label scopes")
  2479  
  2480  	// resolve global identifiers within the same file
  2481  	i := 0
  2482  	for _, ident := range p.unresolved {
  2483  		// i <= index for current ident
  2484  		assert(ident.Obj == unresolved, "object already resolved")
  2485  		ident.Obj = p.pkgScope.Lookup(ident.Name) // also removes unresolved sentinel
  2486  		if ident.Obj == nil {
  2487  			p.unresolved[i] = ident
  2488  			i++
  2489  		}
  2490  	}
  2491  
  2492  	return &ast.File{
  2493  		Doc:        doc,
  2494  		Package:    pos,
  2495  		Name:       ident,
  2496  		Decls:      decls,
  2497  		Scope:      p.pkgScope,
  2498  		Imports:    p.imports,
  2499  		Unresolved: p.unresolved[0:i],
  2500  		Comments:   p.comments,
  2501  	}
  2502  }