github.com/zxy12/golang151_with_comment@v0.0.0-20190507085033-721809559d3c/go/types/expr.go (about)

     1  // Copyright 2012 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // This file implements typechecking of expressions.
     6  
     7  package types
     8  
     9  import (
    10  	"fmt"
    11  	"go/ast"
    12  	"go/constant"
    13  	"go/token"
    14  	"math"
    15  )
    16  
    17  /*
    18  Basic algorithm:
    19  
    20  Expressions are checked recursively, top down. Expression checker functions
    21  are generally of the form:
    22  
    23    func f(x *operand, e *ast.Expr, ...)
    24  
    25  where e is the expression to be checked, and x is the result of the check.
    26  The check performed by f may fail in which case x.mode == invalid, and
    27  related error messages will have been issued by f.
    28  
    29  If a hint argument is present, it is the composite literal element type
    30  of an outer composite literal; it is used to type-check composite literal
    31  elements that have no explicit type specification in the source
    32  (e.g.: []T{{...}, {...}}, the hint is the type T in this case).
    33  
    34  All expressions are checked via rawExpr, which dispatches according
    35  to expression kind. Upon returning, rawExpr is recording the types and
    36  constant values for all expressions that have an untyped type (those types
    37  may change on the way up in the expression tree). Usually these are constants,
    38  but the results of comparisons or non-constant shifts of untyped constants
    39  may also be untyped, but not constant.
    40  
    41  Untyped expressions may eventually become fully typed (i.e., not untyped),
    42  typically when the value is assigned to a variable, or is used otherwise.
    43  The updateExprType method is used to record this final type and update
    44  the recorded types: the type-checked expression tree is again traversed down,
    45  and the new type is propagated as needed. Untyped constant expression values
    46  that become fully typed must now be representable by the full type (constant
    47  sub-expression trees are left alone except for their roots). This mechanism
    48  ensures that a client sees the actual (run-time) type an untyped value would
    49  have. It also permits type-checking of lhs shift operands "as if the shift
    50  were not present": when updateExprType visits an untyped lhs shift operand
    51  and assigns it it's final type, that type must be an integer type, and a
    52  constant lhs must be representable as an integer.
    53  
    54  When an expression gets its final type, either on the way out from rawExpr,
    55  on the way down in updateExprType, or at the end of the type checker run,
    56  the type (and constant value, if any) is recorded via Info.Types, if present.
    57  */
    58  
    59  type opPredicates map[token.Token]func(Type) bool
    60  
    61  var unaryOpPredicates = opPredicates{
    62  	token.ADD: isNumeric,
    63  	token.SUB: isNumeric,
    64  	token.XOR: isInteger,
    65  	token.NOT: isBoolean,
    66  }
    67  
    68  func (check *Checker) op(m opPredicates, x *operand, op token.Token) bool {
    69  	if pred := m[op]; pred != nil {
    70  		if !pred(x.typ) {
    71  			check.invalidOp(x.pos(), "operator %s not defined for %s", op, x)
    72  			return false
    73  		}
    74  	} else {
    75  		check.invalidAST(x.pos(), "unknown operator %s", op)
    76  		return false
    77  	}
    78  	return true
    79  }
    80  
    81  // The unary expression e may be nil. It's passed in for better error messages only.
    82  func (check *Checker) unary(x *operand, e *ast.UnaryExpr, op token.Token) {
    83  	switch op {
    84  	case token.AND:
    85  		// spec: "As an exception to the addressability
    86  		// requirement x may also be a composite literal."
    87  		if _, ok := unparen(x.expr).(*ast.CompositeLit); !ok && x.mode != variable {
    88  			check.invalidOp(x.pos(), "cannot take address of %s", x)
    89  			x.mode = invalid
    90  			return
    91  		}
    92  		x.mode = value
    93  		x.typ = &Pointer{base: x.typ}
    94  		return
    95  
    96  	case token.ARROW:
    97  		typ, ok := x.typ.Underlying().(*Chan)
    98  		if !ok {
    99  			check.invalidOp(x.pos(), "cannot receive from non-channel %s", x)
   100  			x.mode = invalid
   101  			return
   102  		}
   103  		if typ.dir == SendOnly {
   104  			check.invalidOp(x.pos(), "cannot receive from send-only channel %s", x)
   105  			x.mode = invalid
   106  			return
   107  		}
   108  		x.mode = commaok
   109  		x.typ = typ.elem
   110  		check.hasCallOrRecv = true
   111  		return
   112  	}
   113  
   114  	if !check.op(unaryOpPredicates, x, op) {
   115  		x.mode = invalid
   116  		return
   117  	}
   118  
   119  	if x.mode == constant_ {
   120  		typ := x.typ.Underlying().(*Basic)
   121  		var prec uint
   122  		if isUnsigned(typ) {
   123  			prec = uint(check.conf.sizeof(typ) * 8)
   124  		}
   125  		x.val = constant.UnaryOp(op, x.val, prec)
   126  		// Typed constants must be representable in
   127  		// their type after each constant operation.
   128  		if isTyped(typ) {
   129  			if e != nil {
   130  				x.expr = e // for better error message
   131  			}
   132  			check.representable(x, typ)
   133  		}
   134  		return
   135  	}
   136  
   137  	x.mode = value
   138  	// x.typ remains unchanged
   139  }
   140  
   141  func isShift(op token.Token) bool {
   142  	return op == token.SHL || op == token.SHR
   143  }
   144  
   145  func isComparison(op token.Token) bool {
   146  	// Note: tokens are not ordered well to make this much easier
   147  	switch op {
   148  	case token.EQL, token.NEQ, token.LSS, token.LEQ, token.GTR, token.GEQ:
   149  		return true
   150  	}
   151  	return false
   152  }
   153  
   154  func fitsFloat32(x constant.Value) bool {
   155  	f32, _ := constant.Float32Val(x)
   156  	f := float64(f32)
   157  	return !math.IsInf(f, 0)
   158  }
   159  
   160  func roundFloat32(x constant.Value) constant.Value {
   161  	f32, _ := constant.Float32Val(x)
   162  	f := float64(f32)
   163  	if !math.IsInf(f, 0) {
   164  		return constant.MakeFloat64(f)
   165  	}
   166  	return nil
   167  }
   168  
   169  func fitsFloat64(x constant.Value) bool {
   170  	f, _ := constant.Float64Val(x)
   171  	return !math.IsInf(f, 0)
   172  }
   173  
   174  func roundFloat64(x constant.Value) constant.Value {
   175  	f, _ := constant.Float64Val(x)
   176  	if !math.IsInf(f, 0) {
   177  		return constant.MakeFloat64(f)
   178  	}
   179  	return nil
   180  }
   181  
   182  // representableConst reports whether x can be represented as
   183  // value of the given basic type kind and for the configuration
   184  // provided (only needed for int/uint sizes).
   185  //
   186  // If rounded != nil, *rounded is set to the rounded value of x for
   187  // representable floating-point values; it is left alone otherwise.
   188  // It is ok to provide the addressof the first argument for rounded.
   189  func representableConst(x constant.Value, conf *Config, as BasicKind, rounded *constant.Value) bool {
   190  	switch x.Kind() {
   191  	case constant.Unknown:
   192  		return true
   193  
   194  	case constant.Bool:
   195  		return as == Bool || as == UntypedBool
   196  
   197  	case constant.Int:
   198  		if x, ok := constant.Int64Val(x); ok {
   199  			switch as {
   200  			case Int:
   201  				var s = uint(conf.sizeof(Typ[as])) * 8
   202  				return int64(-1)<<(s-1) <= x && x <= int64(1)<<(s-1)-1
   203  			case Int8:
   204  				const s = 8
   205  				return -1<<(s-1) <= x && x <= 1<<(s-1)-1
   206  			case Int16:
   207  				const s = 16
   208  				return -1<<(s-1) <= x && x <= 1<<(s-1)-1
   209  			case Int32:
   210  				const s = 32
   211  				return -1<<(s-1) <= x && x <= 1<<(s-1)-1
   212  			case Int64:
   213  				return true
   214  			case Uint, Uintptr:
   215  				if s := uint(conf.sizeof(Typ[as])) * 8; s < 64 {
   216  					return 0 <= x && x <= int64(1)<<s-1
   217  				}
   218  				return 0 <= x
   219  			case Uint8:
   220  				const s = 8
   221  				return 0 <= x && x <= 1<<s-1
   222  			case Uint16:
   223  				const s = 16
   224  				return 0 <= x && x <= 1<<s-1
   225  			case Uint32:
   226  				const s = 32
   227  				return 0 <= x && x <= 1<<s-1
   228  			case Uint64:
   229  				return 0 <= x
   230  			case Float32, Float64, Complex64, Complex128,
   231  				UntypedInt, UntypedFloat, UntypedComplex:
   232  				return true
   233  			}
   234  		}
   235  
   236  		n := constant.BitLen(x)
   237  		switch as {
   238  		case Uint, Uintptr:
   239  			var s = uint(conf.sizeof(Typ[as])) * 8
   240  			return constant.Sign(x) >= 0 && n <= int(s)
   241  		case Uint64:
   242  			return constant.Sign(x) >= 0 && n <= 64
   243  		case Float32, Complex64:
   244  			if rounded == nil {
   245  				return fitsFloat32(x)
   246  			}
   247  			r := roundFloat32(x)
   248  			if r != nil {
   249  				*rounded = r
   250  				return true
   251  			}
   252  		case Float64, Complex128:
   253  			if rounded == nil {
   254  				return fitsFloat64(x)
   255  			}
   256  			r := roundFloat64(x)
   257  			if r != nil {
   258  				*rounded = r
   259  				return true
   260  			}
   261  		case UntypedInt, UntypedFloat, UntypedComplex:
   262  			return true
   263  		}
   264  
   265  	case constant.Float:
   266  		switch as {
   267  		case Float32, Complex64:
   268  			if rounded == nil {
   269  				return fitsFloat32(x)
   270  			}
   271  			r := roundFloat32(x)
   272  			if r != nil {
   273  				*rounded = r
   274  				return true
   275  			}
   276  		case Float64, Complex128:
   277  			if rounded == nil {
   278  				return fitsFloat64(x)
   279  			}
   280  			r := roundFloat64(x)
   281  			if r != nil {
   282  				*rounded = r
   283  				return true
   284  			}
   285  		case UntypedFloat, UntypedComplex:
   286  			return true
   287  		}
   288  
   289  	case constant.Complex:
   290  		switch as {
   291  		case Complex64:
   292  			if rounded == nil {
   293  				return fitsFloat32(constant.Real(x)) && fitsFloat32(constant.Imag(x))
   294  			}
   295  			re := roundFloat32(constant.Real(x))
   296  			im := roundFloat32(constant.Imag(x))
   297  			if re != nil && im != nil {
   298  				*rounded = constant.BinaryOp(re, token.ADD, constant.MakeImag(im))
   299  				return true
   300  			}
   301  		case Complex128:
   302  			if rounded == nil {
   303  				return fitsFloat64(constant.Real(x)) && fitsFloat64(constant.Imag(x))
   304  			}
   305  			re := roundFloat64(constant.Real(x))
   306  			im := roundFloat64(constant.Imag(x))
   307  			if re != nil && im != nil {
   308  				*rounded = constant.BinaryOp(re, token.ADD, constant.MakeImag(im))
   309  				return true
   310  			}
   311  		case UntypedComplex:
   312  			return true
   313  		}
   314  
   315  	case constant.String:
   316  		return as == String || as == UntypedString
   317  
   318  	default:
   319  		unreachable()
   320  	}
   321  
   322  	return false
   323  }
   324  
   325  // representable checks that a constant operand is representable in the given basic type.
   326  func (check *Checker) representable(x *operand, typ *Basic) {
   327  	assert(x.mode == constant_)
   328  	if !representableConst(x.val, check.conf, typ.kind, &x.val) {
   329  		var msg string
   330  		if isNumeric(x.typ) && isNumeric(typ) {
   331  			// numeric conversion : error msg
   332  			//
   333  			// integer -> integer : overflows
   334  			// integer -> float   : overflows (actually not possible)
   335  			// float   -> integer : truncated
   336  			// float   -> float   : overflows
   337  			//
   338  			if !isInteger(x.typ) && isInteger(typ) {
   339  				msg = "%s truncated to %s"
   340  			} else {
   341  				msg = "%s overflows %s"
   342  			}
   343  		} else {
   344  			msg = "cannot convert %s to %s"
   345  		}
   346  		check.errorf(x.pos(), msg, x, typ)
   347  		x.mode = invalid
   348  	}
   349  }
   350  
   351  // updateExprType updates the type of x to typ and invokes itself
   352  // recursively for the operands of x, depending on expression kind.
   353  // If typ is still an untyped and not the final type, updateExprType
   354  // only updates the recorded untyped type for x and possibly its
   355  // operands. Otherwise (i.e., typ is not an untyped type anymore,
   356  // or it is the final type for x), the type and value are recorded.
   357  // Also, if x is a constant, it must be representable as a value of typ,
   358  // and if x is the (formerly untyped) lhs operand of a non-constant
   359  // shift, it must be an integer value.
   360  //
   361  func (check *Checker) updateExprType(x ast.Expr, typ Type, final bool) {
   362  	old, found := check.untyped[x]
   363  	if !found {
   364  		return // nothing to do
   365  	}
   366  
   367  	// update operands of x if necessary
   368  	switch x := x.(type) {
   369  	case *ast.BadExpr,
   370  		*ast.FuncLit,
   371  		*ast.CompositeLit,
   372  		*ast.IndexExpr,
   373  		*ast.SliceExpr,
   374  		*ast.TypeAssertExpr,
   375  		*ast.StarExpr,
   376  		*ast.KeyValueExpr,
   377  		*ast.ArrayType,
   378  		*ast.StructType,
   379  		*ast.FuncType,
   380  		*ast.InterfaceType,
   381  		*ast.MapType,
   382  		*ast.ChanType:
   383  		// These expression are never untyped - nothing to do.
   384  		// The respective sub-expressions got their final types
   385  		// upon assignment or use.
   386  		if debug {
   387  			check.dump("%s: found old type(%s): %s (new: %s)", x.Pos(), x, old.typ, typ)
   388  			unreachable()
   389  		}
   390  		return
   391  
   392  	case *ast.CallExpr:
   393  		// Resulting in an untyped constant (e.g., built-in complex).
   394  		// The respective calls take care of calling updateExprType
   395  		// for the arguments if necessary.
   396  
   397  	case *ast.Ident, *ast.BasicLit, *ast.SelectorExpr:
   398  		// An identifier denoting a constant, a constant literal,
   399  		// or a qualified identifier (imported untyped constant).
   400  		// No operands to take care of.
   401  
   402  	case *ast.ParenExpr:
   403  		check.updateExprType(x.X, typ, final)
   404  
   405  	case *ast.UnaryExpr:
   406  		// If x is a constant, the operands were constants.
   407  		// They don't need to be updated since they never
   408  		// get "materialized" into a typed value; and they
   409  		// will be processed at the end of the type check.
   410  		if old.val != nil {
   411  			break
   412  		}
   413  		check.updateExprType(x.X, typ, final)
   414  
   415  	case *ast.BinaryExpr:
   416  		if old.val != nil {
   417  			break // see comment for unary expressions
   418  		}
   419  		if isComparison(x.Op) {
   420  			// The result type is independent of operand types
   421  			// and the operand types must have final types.
   422  		} else if isShift(x.Op) {
   423  			// The result type depends only on lhs operand.
   424  			// The rhs type was updated when checking the shift.
   425  			check.updateExprType(x.X, typ, final)
   426  		} else {
   427  			// The operand types match the result type.
   428  			check.updateExprType(x.X, typ, final)
   429  			check.updateExprType(x.Y, typ, final)
   430  		}
   431  
   432  	default:
   433  		unreachable()
   434  	}
   435  
   436  	// If the new type is not final and still untyped, just
   437  	// update the recorded type.
   438  	if !final && isUntyped(typ) {
   439  		old.typ = typ.Underlying().(*Basic)
   440  		check.untyped[x] = old
   441  		return
   442  	}
   443  
   444  	// Otherwise we have the final (typed or untyped type).
   445  	// Remove it from the map of yet untyped expressions.
   446  	delete(check.untyped, x)
   447  
   448  	// If x is the lhs of a shift, its final type must be integer.
   449  	// We already know from the shift check that it is representable
   450  	// as an integer if it is a constant.
   451  	if old.isLhs && !isInteger(typ) {
   452  		check.invalidOp(x.Pos(), "shifted operand %s (type %s) must be integer", x, typ)
   453  		return
   454  	}
   455  
   456  	// Everything's fine, record final type and value for x.
   457  	check.recordTypeAndValue(x, old.mode, typ, old.val)
   458  }
   459  
   460  // updateExprVal updates the value of x to val.
   461  func (check *Checker) updateExprVal(x ast.Expr, val constant.Value) {
   462  	if info, ok := check.untyped[x]; ok {
   463  		info.val = val
   464  		check.untyped[x] = info
   465  	}
   466  }
   467  
   468  // convertUntyped attempts to set the type of an untyped value to the target type.
   469  func (check *Checker) convertUntyped(x *operand, target Type) {
   470  	if x.mode == invalid || isTyped(x.typ) || target == Typ[Invalid] {
   471  		return
   472  	}
   473  
   474  	// TODO(gri) Sloppy code - clean up. This function is central
   475  	//           to assignment and expression checking.
   476  
   477  	if isUntyped(target) {
   478  		// both x and target are untyped
   479  		xkind := x.typ.(*Basic).kind
   480  		tkind := target.(*Basic).kind
   481  		if isNumeric(x.typ) && isNumeric(target) {
   482  			if xkind < tkind {
   483  				x.typ = target
   484  				check.updateExprType(x.expr, target, false)
   485  			}
   486  		} else if xkind != tkind {
   487  			goto Error
   488  		}
   489  		return
   490  	}
   491  
   492  	// typed target
   493  	switch t := target.Underlying().(type) {
   494  	case *Basic:
   495  		if x.mode == constant_ {
   496  			check.representable(x, t)
   497  			if x.mode == invalid {
   498  				return
   499  			}
   500  			// expression value may have been rounded - update if needed
   501  			// TODO(gri) A floating-point value may silently underflow to
   502  			// zero. If it was negative, the sign is lost. See issue 6898.
   503  			check.updateExprVal(x.expr, x.val)
   504  		} else {
   505  			// Non-constant untyped values may appear as the
   506  			// result of comparisons (untyped bool), intermediate
   507  			// (delayed-checked) rhs operands of shifts, and as
   508  			// the value nil.
   509  			switch x.typ.(*Basic).kind {
   510  			case UntypedBool:
   511  				if !isBoolean(target) {
   512  					goto Error
   513  				}
   514  			case UntypedInt, UntypedRune, UntypedFloat, UntypedComplex:
   515  				if !isNumeric(target) {
   516  					goto Error
   517  				}
   518  			case UntypedString:
   519  				// Non-constant untyped string values are not
   520  				// permitted by the spec and should not occur.
   521  				unreachable()
   522  			case UntypedNil:
   523  				// Unsafe.Pointer is a basic type that includes nil.
   524  				if !hasNil(target) {
   525  					goto Error
   526  				}
   527  			default:
   528  				goto Error
   529  			}
   530  		}
   531  	case *Interface:
   532  		if !x.isNil() && !t.Empty() /* empty interfaces are ok */ {
   533  			goto Error
   534  		}
   535  		// Update operand types to the default type rather then
   536  		// the target (interface) type: values must have concrete
   537  		// dynamic types. If the value is nil, keep it untyped
   538  		// (this is important for tools such as go vet which need
   539  		// the dynamic type for argument checking of say, print
   540  		// functions)
   541  		if x.isNil() {
   542  			target = Typ[UntypedNil]
   543  		} else {
   544  			// cannot assign untyped values to non-empty interfaces
   545  			if !t.Empty() {
   546  				goto Error
   547  			}
   548  			target = defaultType(x.typ)
   549  		}
   550  	case *Pointer, *Signature, *Slice, *Map, *Chan:
   551  		if !x.isNil() {
   552  			goto Error
   553  		}
   554  		// keep nil untyped - see comment for interfaces, above
   555  		target = Typ[UntypedNil]
   556  	default:
   557  		goto Error
   558  	}
   559  
   560  	x.typ = target
   561  	check.updateExprType(x.expr, target, true) // UntypedNils are final
   562  	return
   563  
   564  Error:
   565  	check.errorf(x.pos(), "cannot convert %s to %s", x, target)
   566  	x.mode = invalid
   567  }
   568  
   569  func (check *Checker) comparison(x, y *operand, op token.Token) {
   570  	// spec: "In any comparison, the first operand must be assignable
   571  	// to the type of the second operand, or vice versa."
   572  	err := ""
   573  	if x.assignableTo(check.conf, y.typ) || y.assignableTo(check.conf, x.typ) {
   574  		defined := false
   575  		switch op {
   576  		case token.EQL, token.NEQ:
   577  			// spec: "The equality operators == and != apply to operands that are comparable."
   578  			defined = Comparable(x.typ) || x.isNil() && hasNil(y.typ) || y.isNil() && hasNil(x.typ)
   579  		case token.LSS, token.LEQ, token.GTR, token.GEQ:
   580  			// spec: The ordering operators <, <=, >, and >= apply to operands that are ordered."
   581  			defined = isOrdered(x.typ)
   582  		default:
   583  			unreachable()
   584  		}
   585  		if !defined {
   586  			typ := x.typ
   587  			if x.isNil() {
   588  				typ = y.typ
   589  			}
   590  			err = check.sprintf("operator %s not defined for %s", op, typ)
   591  		}
   592  	} else {
   593  		err = check.sprintf("mismatched types %s and %s", x.typ, y.typ)
   594  	}
   595  
   596  	if err != "" {
   597  		check.errorf(x.pos(), "cannot compare %s %s %s (%s)", x.expr, op, y.expr, err)
   598  		x.mode = invalid
   599  		return
   600  	}
   601  
   602  	if x.mode == constant_ && y.mode == constant_ {
   603  		x.val = constant.MakeBool(constant.Compare(x.val, op, y.val))
   604  		// The operands are never materialized; no need to update
   605  		// their types.
   606  	} else {
   607  		x.mode = value
   608  		// The operands have now their final types, which at run-
   609  		// time will be materialized. Update the expression trees.
   610  		// If the current types are untyped, the materialized type
   611  		// is the respective default type.
   612  		check.updateExprType(x.expr, defaultType(x.typ), true)
   613  		check.updateExprType(y.expr, defaultType(y.typ), true)
   614  	}
   615  
   616  	// spec: "Comparison operators compare two operands and yield
   617  	//        an untyped boolean value."
   618  	x.typ = Typ[UntypedBool]
   619  }
   620  
   621  func (check *Checker) shift(x, y *operand, op token.Token) {
   622  	untypedx := isUntyped(x.typ)
   623  
   624  	// The lhs must be of integer type or be representable
   625  	// as an integer; otherwise the shift has no chance.
   626  	if !x.isInteger() {
   627  		check.invalidOp(x.pos(), "shifted operand %s must be integer", x)
   628  		x.mode = invalid
   629  		return
   630  	}
   631  
   632  	// spec: "The right operand in a shift expression must have unsigned
   633  	// integer type or be an untyped constant that can be converted to
   634  	// unsigned integer type."
   635  	switch {
   636  	case isInteger(y.typ) && isUnsigned(y.typ):
   637  		// nothing to do
   638  	case isUntyped(y.typ):
   639  		check.convertUntyped(y, Typ[UntypedInt])
   640  		if y.mode == invalid {
   641  			x.mode = invalid
   642  			return
   643  		}
   644  	default:
   645  		check.invalidOp(y.pos(), "shift count %s must be unsigned integer", y)
   646  		x.mode = invalid
   647  		return
   648  	}
   649  
   650  	if x.mode == constant_ {
   651  		if y.mode == constant_ {
   652  			// rhs must be an integer value
   653  			if !y.isInteger() {
   654  				check.invalidOp(y.pos(), "shift count %s must be unsigned integer", y)
   655  				x.mode = invalid
   656  				return
   657  			}
   658  			// rhs must be within reasonable bounds
   659  			const stupidShift = 1023 - 1 + 52 // so we can express smallestFloat64
   660  			s, ok := constant.Uint64Val(y.val)
   661  			if !ok || s > stupidShift {
   662  				check.invalidOp(y.pos(), "stupid shift count %s", y)
   663  				x.mode = invalid
   664  				return
   665  			}
   666  			// The lhs is representable as an integer but may not be an integer
   667  			// (e.g., 2.0, an untyped float) - this can only happen for untyped
   668  			// non-integer numeric constants. Correct the type so that the shift
   669  			// result is of integer type.
   670  			if !isInteger(x.typ) {
   671  				x.typ = Typ[UntypedInt]
   672  			}
   673  			x.val = constant.Shift(x.val, op, uint(s))
   674  			return
   675  		}
   676  
   677  		// non-constant shift with constant lhs
   678  		if untypedx {
   679  			// spec: "If the left operand of a non-constant shift
   680  			// expression is an untyped constant, the type of the
   681  			// constant is what it would be if the shift expression
   682  			// were replaced by its left operand alone.".
   683  			//
   684  			// Delay operand checking until we know the final type:
   685  			// The lhs expression must be in the untyped map, mark
   686  			// the entry as lhs shift operand.
   687  			info, found := check.untyped[x.expr]
   688  			assert(found)
   689  			info.isLhs = true
   690  			check.untyped[x.expr] = info
   691  			// keep x's type
   692  			x.mode = value
   693  			return
   694  		}
   695  	}
   696  
   697  	// constant rhs must be >= 0
   698  	if y.mode == constant_ && constant.Sign(y.val) < 0 {
   699  		check.invalidOp(y.pos(), "shift count %s must not be negative", y)
   700  	}
   701  
   702  	// non-constant shift - lhs must be an integer
   703  	if !isInteger(x.typ) {
   704  		check.invalidOp(x.pos(), "shifted operand %s must be integer", x)
   705  		x.mode = invalid
   706  		return
   707  	}
   708  
   709  	x.mode = value
   710  }
   711  
   712  var binaryOpPredicates = opPredicates{
   713  	token.ADD: func(typ Type) bool { return isNumeric(typ) || isString(typ) },
   714  	token.SUB: isNumeric,
   715  	token.MUL: isNumeric,
   716  	token.QUO: isNumeric,
   717  	token.REM: isInteger,
   718  
   719  	token.AND:     isInteger,
   720  	token.OR:      isInteger,
   721  	token.XOR:     isInteger,
   722  	token.AND_NOT: isInteger,
   723  
   724  	token.LAND: isBoolean,
   725  	token.LOR:  isBoolean,
   726  }
   727  
   728  // The binary expression e may be nil. It's passed in for better error messages only.
   729  func (check *Checker) binary(x *operand, e *ast.BinaryExpr, lhs, rhs ast.Expr, op token.Token) {
   730  	var y operand
   731  
   732  	check.expr(x, lhs)
   733  	check.expr(&y, rhs)
   734  
   735  	if x.mode == invalid {
   736  		return
   737  	}
   738  	if y.mode == invalid {
   739  		x.mode = invalid
   740  		x.expr = y.expr
   741  		return
   742  	}
   743  
   744  	if isShift(op) {
   745  		check.shift(x, &y, op)
   746  		return
   747  	}
   748  
   749  	check.convertUntyped(x, y.typ)
   750  	if x.mode == invalid {
   751  		return
   752  	}
   753  	check.convertUntyped(&y, x.typ)
   754  	if y.mode == invalid {
   755  		x.mode = invalid
   756  		return
   757  	}
   758  
   759  	if isComparison(op) {
   760  		check.comparison(x, &y, op)
   761  		return
   762  	}
   763  
   764  	if !Identical(x.typ, y.typ) {
   765  		// only report an error if we have valid types
   766  		// (otherwise we had an error reported elsewhere already)
   767  		if x.typ != Typ[Invalid] && y.typ != Typ[Invalid] {
   768  			check.invalidOp(x.pos(), "mismatched types %s and %s", x.typ, y.typ)
   769  		}
   770  		x.mode = invalid
   771  		return
   772  	}
   773  
   774  	if !check.op(binaryOpPredicates, x, op) {
   775  		x.mode = invalid
   776  		return
   777  	}
   778  
   779  	if (op == token.QUO || op == token.REM) && (x.mode == constant_ || isInteger(x.typ)) && y.mode == constant_ && constant.Sign(y.val) == 0 {
   780  		check.invalidOp(y.pos(), "division by zero")
   781  		x.mode = invalid
   782  		return
   783  	}
   784  
   785  	if x.mode == constant_ && y.mode == constant_ {
   786  		typ := x.typ.Underlying().(*Basic)
   787  		// force integer division of integer operands
   788  		if op == token.QUO && isInteger(typ) {
   789  			op = token.QUO_ASSIGN
   790  		}
   791  		x.val = constant.BinaryOp(x.val, op, y.val)
   792  		// Typed constants must be representable in
   793  		// their type after each constant operation.
   794  		if isTyped(typ) {
   795  			if e != nil {
   796  				x.expr = e // for better error message
   797  			}
   798  			check.representable(x, typ)
   799  		}
   800  		return
   801  	}
   802  
   803  	x.mode = value
   804  	// x.typ is unchanged
   805  }
   806  
   807  // index checks an index expression for validity.
   808  // If max >= 0, it is the upper bound for index.
   809  // If index is valid and the result i >= 0, then i is the constant value of index.
   810  func (check *Checker) index(index ast.Expr, max int64) (i int64, valid bool) {
   811  	var x operand
   812  	check.expr(&x, index)
   813  	if x.mode == invalid {
   814  		return
   815  	}
   816  
   817  	// an untyped constant must be representable as Int
   818  	check.convertUntyped(&x, Typ[Int])
   819  	if x.mode == invalid {
   820  		return
   821  	}
   822  
   823  	// the index must be of integer type
   824  	if !isInteger(x.typ) {
   825  		check.invalidArg(x.pos(), "index %s must be integer", &x)
   826  		return
   827  	}
   828  
   829  	// a constant index i must be in bounds
   830  	if x.mode == constant_ {
   831  		if constant.Sign(x.val) < 0 {
   832  			check.invalidArg(x.pos(), "index %s must not be negative", &x)
   833  			return
   834  		}
   835  		i, valid = constant.Int64Val(x.val)
   836  		if !valid || max >= 0 && i >= max {
   837  			check.errorf(x.pos(), "index %s is out of bounds", &x)
   838  			return i, false
   839  		}
   840  		// 0 <= i [ && i < max ]
   841  		return i, true
   842  	}
   843  
   844  	return -1, true
   845  }
   846  
   847  // indexElts checks the elements (elts) of an array or slice composite literal
   848  // against the literal's element type (typ), and the element indices against
   849  // the literal length if known (length >= 0). It returns the length of the
   850  // literal (maximum index value + 1).
   851  //
   852  func (check *Checker) indexedElts(elts []ast.Expr, typ Type, length int64) int64 {
   853  	visited := make(map[int64]bool, len(elts))
   854  	var index, max int64
   855  	for _, e := range elts {
   856  		// determine and check index
   857  		validIndex := false
   858  		eval := e
   859  		if kv, _ := e.(*ast.KeyValueExpr); kv != nil {
   860  			if i, ok := check.index(kv.Key, length); ok {
   861  				if i >= 0 {
   862  					index = i
   863  					validIndex = true
   864  				} else {
   865  					check.errorf(e.Pos(), "index %s must be integer constant", kv.Key)
   866  				}
   867  			}
   868  			eval = kv.Value
   869  		} else if length >= 0 && index >= length {
   870  			check.errorf(e.Pos(), "index %d is out of bounds (>= %d)", index, length)
   871  		} else {
   872  			validIndex = true
   873  		}
   874  
   875  		// if we have a valid index, check for duplicate entries
   876  		if validIndex {
   877  			if visited[index] {
   878  				check.errorf(e.Pos(), "duplicate index %d in array or slice literal", index)
   879  			}
   880  			visited[index] = true
   881  		}
   882  		index++
   883  		if index > max {
   884  			max = index
   885  		}
   886  
   887  		// check element against composite literal element type
   888  		var x operand
   889  		check.exprWithHint(&x, eval, typ)
   890  		if !check.assignment(&x, typ) && x.mode != invalid {
   891  			check.errorf(x.pos(), "cannot use %s as %s value in array or slice literal", &x, typ)
   892  		}
   893  	}
   894  	return max
   895  }
   896  
   897  // exprKind describes the kind of an expression; the kind
   898  // determines if an expression is valid in 'statement context'.
   899  type exprKind int
   900  
   901  const (
   902  	conversion exprKind = iota
   903  	expression
   904  	statement
   905  )
   906  
   907  // rawExpr typechecks expression e and initializes x with the expression
   908  // value or type. If an error occurred, x.mode is set to invalid.
   909  // If hint != nil, it is the type of a composite literal element.
   910  //
   911  func (check *Checker) rawExpr(x *operand, e ast.Expr, hint Type) exprKind {
   912  	if trace {
   913  		check.trace(e.Pos(), "%s", e)
   914  		check.indent++
   915  		defer func() {
   916  			check.indent--
   917  			check.trace(e.Pos(), "=> %s", x)
   918  		}()
   919  	}
   920  
   921  	kind := check.exprInternal(x, e, hint)
   922  
   923  	// convert x into a user-friendly set of values
   924  	// TODO(gri) this code can be simplified
   925  	var typ Type
   926  	var val constant.Value
   927  	switch x.mode {
   928  	case invalid:
   929  		typ = Typ[Invalid]
   930  	case novalue:
   931  		typ = (*Tuple)(nil)
   932  	case constant_:
   933  		typ = x.typ
   934  		val = x.val
   935  	default:
   936  		typ = x.typ
   937  	}
   938  	assert(x.expr != nil && typ != nil)
   939  
   940  	if isUntyped(typ) {
   941  		// delay type and value recording until we know the type
   942  		// or until the end of type checking
   943  		check.rememberUntyped(x.expr, false, x.mode, typ.(*Basic), val)
   944  	} else {
   945  		check.recordTypeAndValue(e, x.mode, typ, val)
   946  	}
   947  
   948  	return kind
   949  }
   950  
   951  // exprInternal contains the core of type checking of expressions.
   952  // Must only be called by rawExpr.
   953  //
   954  func (check *Checker) exprInternal(x *operand, e ast.Expr, hint Type) exprKind {
   955  	// make sure x has a valid state in case of bailout
   956  	// (was issue 5770)
   957  	x.mode = invalid
   958  	x.typ = Typ[Invalid]
   959  
   960  	switch e := e.(type) {
   961  	case *ast.BadExpr:
   962  		goto Error // error was reported before
   963  
   964  	case *ast.Ident:
   965  		check.ident(x, e, nil, nil)
   966  
   967  	case *ast.Ellipsis:
   968  		// ellipses are handled explicitly where they are legal
   969  		// (array composite literals and parameter lists)
   970  		check.error(e.Pos(), "invalid use of '...'")
   971  		goto Error
   972  
   973  	case *ast.BasicLit:
   974  		x.setConst(e.Kind, e.Value)
   975  		if x.mode == invalid {
   976  			check.invalidAST(e.Pos(), "invalid literal %v", e.Value)
   977  			goto Error
   978  		}
   979  
   980  	case *ast.FuncLit:
   981  		if sig, ok := check.typ(e.Type).(*Signature); ok {
   982  			// Anonymous functions are considered part of the
   983  			// init expression/func declaration which contains
   984  			// them: use existing package-level declaration info.
   985  			check.funcBody(check.decl, "", sig, e.Body)
   986  			x.mode = value
   987  			x.typ = sig
   988  		} else {
   989  			check.invalidAST(e.Pos(), "invalid function literal %s", e)
   990  			goto Error
   991  		}
   992  
   993  	case *ast.CompositeLit:
   994  		typ := hint
   995  		openArray := false
   996  		if e.Type != nil {
   997  			// [...]T array types may only appear with composite literals.
   998  			// Check for them here so we don't have to handle ... in general.
   999  			typ = nil
  1000  			if atyp, _ := e.Type.(*ast.ArrayType); atyp != nil && atyp.Len != nil {
  1001  				if ellip, _ := atyp.Len.(*ast.Ellipsis); ellip != nil && ellip.Elt == nil {
  1002  					// We have an "open" [...]T array type.
  1003  					// Create a new ArrayType with unknown length (-1)
  1004  					// and finish setting it up after analyzing the literal.
  1005  					typ = &Array{len: -1, elem: check.typ(atyp.Elt)}
  1006  					openArray = true
  1007  				}
  1008  			}
  1009  			if typ == nil {
  1010  				typ = check.typ(e.Type)
  1011  			}
  1012  		}
  1013  		if typ == nil {
  1014  			// TODO(gri) provide better error messages depending on context
  1015  			check.error(e.Pos(), "missing type in composite literal")
  1016  			goto Error
  1017  		}
  1018  
  1019  		switch typ, _ := deref(typ); utyp := typ.Underlying().(type) {
  1020  		case *Struct:
  1021  			if len(e.Elts) == 0 {
  1022  				break
  1023  			}
  1024  			fields := utyp.fields
  1025  			if _, ok := e.Elts[0].(*ast.KeyValueExpr); ok {
  1026  				// all elements must have keys
  1027  				visited := make([]bool, len(fields))
  1028  				for _, e := range e.Elts {
  1029  					kv, _ := e.(*ast.KeyValueExpr)
  1030  					if kv == nil {
  1031  						check.error(e.Pos(), "mixture of field:value and value elements in struct literal")
  1032  						continue
  1033  					}
  1034  					key, _ := kv.Key.(*ast.Ident)
  1035  					if key == nil {
  1036  						check.errorf(kv.Pos(), "invalid field name %s in struct literal", kv.Key)
  1037  						continue
  1038  					}
  1039  					i := fieldIndex(utyp.fields, check.pkg, key.Name)
  1040  					if i < 0 {
  1041  						check.errorf(kv.Pos(), "unknown field %s in struct literal", key.Name)
  1042  						continue
  1043  					}
  1044  					fld := fields[i]
  1045  					check.recordUse(key, fld)
  1046  					// 0 <= i < len(fields)
  1047  					if visited[i] {
  1048  						check.errorf(kv.Pos(), "duplicate field name %s in struct literal", key.Name)
  1049  						continue
  1050  					}
  1051  					visited[i] = true
  1052  					check.expr(x, kv.Value)
  1053  					etyp := fld.typ
  1054  					if !check.assignment(x, etyp) {
  1055  						if x.mode != invalid {
  1056  							check.errorf(x.pos(), "cannot use %s as %s value in struct literal", x, etyp)
  1057  						}
  1058  						continue
  1059  					}
  1060  				}
  1061  			} else {
  1062  				// no element must have a key
  1063  				for i, e := range e.Elts {
  1064  					if kv, _ := e.(*ast.KeyValueExpr); kv != nil {
  1065  						check.error(kv.Pos(), "mixture of field:value and value elements in struct literal")
  1066  						continue
  1067  					}
  1068  					check.expr(x, e)
  1069  					if i >= len(fields) {
  1070  						check.error(x.pos(), "too many values in struct literal")
  1071  						break // cannot continue
  1072  					}
  1073  					// i < len(fields)
  1074  					fld := fields[i]
  1075  					if !fld.Exported() && fld.pkg != check.pkg {
  1076  						check.errorf(x.pos(), "implicit assignment to unexported field %s in %s literal", fld.name, typ)
  1077  						continue
  1078  					}
  1079  					etyp := fld.typ
  1080  					if !check.assignment(x, etyp) {
  1081  						if x.mode != invalid {
  1082  							check.errorf(x.pos(), "cannot use %s as %s value in struct literal", x, etyp)
  1083  						}
  1084  						continue
  1085  					}
  1086  				}
  1087  				if len(e.Elts) < len(fields) {
  1088  					check.error(e.Rbrace, "too few values in struct literal")
  1089  					// ok to continue
  1090  				}
  1091  			}
  1092  
  1093  		case *Array:
  1094  			n := check.indexedElts(e.Elts, utyp.elem, utyp.len)
  1095  			// if we have an "open" [...]T array, set the length now that we know it
  1096  			if openArray {
  1097  				utyp.len = n
  1098  			}
  1099  
  1100  		case *Slice:
  1101  			check.indexedElts(e.Elts, utyp.elem, -1)
  1102  
  1103  		case *Map:
  1104  			visited := make(map[interface{}][]Type, len(e.Elts))
  1105  			for _, e := range e.Elts {
  1106  				kv, _ := e.(*ast.KeyValueExpr)
  1107  				if kv == nil {
  1108  					check.error(e.Pos(), "missing key in map literal")
  1109  					continue
  1110  				}
  1111  				check.exprWithHint(x, kv.Key, utyp.key)
  1112  				if !check.assignment(x, utyp.key) {
  1113  					if x.mode != invalid {
  1114  						check.errorf(x.pos(), "cannot use %s as %s key in map literal", x, utyp.key)
  1115  					}
  1116  					continue
  1117  				}
  1118  				if x.mode == constant_ {
  1119  					duplicate := false
  1120  					// if the key is of interface type, the type is also significant when checking for duplicates
  1121  					if _, ok := utyp.key.Underlying().(*Interface); ok {
  1122  						for _, vtyp := range visited[x.val] {
  1123  							if Identical(vtyp, x.typ) {
  1124  								duplicate = true
  1125  								break
  1126  							}
  1127  						}
  1128  						visited[x.val] = append(visited[x.val], x.typ)
  1129  					} else {
  1130  						_, duplicate = visited[x.val]
  1131  						visited[x.val] = nil
  1132  					}
  1133  					if duplicate {
  1134  						check.errorf(x.pos(), "duplicate key %s in map literal", x.val)
  1135  						continue
  1136  					}
  1137  				}
  1138  				check.exprWithHint(x, kv.Value, utyp.elem)
  1139  				if !check.assignment(x, utyp.elem) {
  1140  					if x.mode != invalid {
  1141  						check.errorf(x.pos(), "cannot use %s as %s value in map literal", x, utyp.elem)
  1142  					}
  1143  					continue
  1144  				}
  1145  			}
  1146  
  1147  		default:
  1148  			// if utyp is invalid, an error was reported before
  1149  			if utyp != Typ[Invalid] {
  1150  				check.errorf(e.Pos(), "invalid composite literal type %s", typ)
  1151  				goto Error
  1152  			}
  1153  		}
  1154  
  1155  		x.mode = value
  1156  		x.typ = typ
  1157  
  1158  	case *ast.ParenExpr:
  1159  		kind := check.rawExpr(x, e.X, nil)
  1160  		x.expr = e
  1161  		return kind
  1162  
  1163  	case *ast.SelectorExpr:
  1164  		check.selector(x, e)
  1165  
  1166  	case *ast.IndexExpr:
  1167  		check.expr(x, e.X)
  1168  		if x.mode == invalid {
  1169  			goto Error
  1170  		}
  1171  
  1172  		valid := false
  1173  		length := int64(-1) // valid if >= 0
  1174  		switch typ := x.typ.Underlying().(type) {
  1175  		case *Basic:
  1176  			if isString(typ) {
  1177  				valid = true
  1178  				if x.mode == constant_ {
  1179  					length = int64(len(constant.StringVal(x.val)))
  1180  				}
  1181  				// an indexed string always yields a byte value
  1182  				// (not a constant) even if the string and the
  1183  				// index are constant
  1184  				x.mode = value
  1185  				x.typ = universeByte // use 'byte' name
  1186  			}
  1187  
  1188  		case *Array:
  1189  			valid = true
  1190  			length = typ.len
  1191  			if x.mode != variable {
  1192  				x.mode = value
  1193  			}
  1194  			x.typ = typ.elem
  1195  
  1196  		case *Pointer:
  1197  			if typ, _ := typ.base.Underlying().(*Array); typ != nil {
  1198  				valid = true
  1199  				length = typ.len
  1200  				x.mode = variable
  1201  				x.typ = typ.elem
  1202  			}
  1203  
  1204  		case *Slice:
  1205  			valid = true
  1206  			x.mode = variable
  1207  			x.typ = typ.elem
  1208  
  1209  		case *Map:
  1210  			var key operand
  1211  			check.expr(&key, e.Index)
  1212  			if !check.assignment(&key, typ.key) {
  1213  				if key.mode != invalid {
  1214  					check.invalidOp(key.pos(), "cannot use %s as map index of type %s", &key, typ.key)
  1215  				}
  1216  				goto Error
  1217  			}
  1218  			x.mode = mapindex
  1219  			x.typ = typ.elem
  1220  			x.expr = e
  1221  			return expression
  1222  		}
  1223  
  1224  		if !valid {
  1225  			check.invalidOp(x.pos(), "cannot index %s", x)
  1226  			goto Error
  1227  		}
  1228  
  1229  		if e.Index == nil {
  1230  			check.invalidAST(e.Pos(), "missing index for %s", x)
  1231  			goto Error
  1232  		}
  1233  
  1234  		check.index(e.Index, length)
  1235  		// ok to continue
  1236  
  1237  	case *ast.SliceExpr:
  1238  		check.expr(x, e.X)
  1239  		if x.mode == invalid {
  1240  			goto Error
  1241  		}
  1242  
  1243  		valid := false
  1244  		length := int64(-1) // valid if >= 0
  1245  		switch typ := x.typ.Underlying().(type) {
  1246  		case *Basic:
  1247  			if isString(typ) {
  1248  				if slice3(e) {
  1249  					check.invalidOp(x.pos(), "3-index slice of string")
  1250  					goto Error
  1251  				}
  1252  				valid = true
  1253  				if x.mode == constant_ {
  1254  					length = int64(len(constant.StringVal(x.val)))
  1255  				}
  1256  				// spec: "For untyped string operands the result
  1257  				// is a non-constant value of type string."
  1258  				if typ.kind == UntypedString {
  1259  					x.typ = Typ[String]
  1260  				}
  1261  			}
  1262  
  1263  		case *Array:
  1264  			valid = true
  1265  			length = typ.len
  1266  			if x.mode != variable {
  1267  				check.invalidOp(x.pos(), "cannot slice %s (value not addressable)", x)
  1268  				goto Error
  1269  			}
  1270  			x.typ = &Slice{elem: typ.elem}
  1271  
  1272  		case *Pointer:
  1273  			if typ, _ := typ.base.Underlying().(*Array); typ != nil {
  1274  				valid = true
  1275  				length = typ.len
  1276  				x.typ = &Slice{elem: typ.elem}
  1277  			}
  1278  
  1279  		case *Slice:
  1280  			valid = true
  1281  			// x.typ doesn't change
  1282  		}
  1283  
  1284  		if !valid {
  1285  			check.invalidOp(x.pos(), "cannot slice %s", x)
  1286  			goto Error
  1287  		}
  1288  
  1289  		x.mode = value
  1290  
  1291  		// spec: "Only the first index may be omitted; it defaults to 0."
  1292  		if slice3(e) && (e.High == nil || sliceMax(e) == nil) {
  1293  			check.error(e.Rbrack, "2nd and 3rd index required in 3-index slice")
  1294  			goto Error
  1295  		}
  1296  
  1297  		// check indices
  1298  		var ind [3]int64
  1299  		for i, expr := range []ast.Expr{e.Low, e.High, sliceMax(e)} {
  1300  			x := int64(-1)
  1301  			switch {
  1302  			case expr != nil:
  1303  				// The "capacity" is only known statically for strings, arrays,
  1304  				// and pointers to arrays, and it is the same as the length for
  1305  				// those types.
  1306  				max := int64(-1)
  1307  				if length >= 0 {
  1308  					max = length + 1
  1309  				}
  1310  				if t, ok := check.index(expr, max); ok && t >= 0 {
  1311  					x = t
  1312  				}
  1313  			case i == 0:
  1314  				// default is 0 for the first index
  1315  				x = 0
  1316  			case length >= 0:
  1317  				// default is length (== capacity) otherwise
  1318  				x = length
  1319  			}
  1320  			ind[i] = x
  1321  		}
  1322  
  1323  		// constant indices must be in range
  1324  		// (check.index already checks that existing indices >= 0)
  1325  	L:
  1326  		for i, x := range ind[:len(ind)-1] {
  1327  			if x > 0 {
  1328  				for _, y := range ind[i+1:] {
  1329  					if y >= 0 && x > y {
  1330  						check.errorf(e.Rbrack, "invalid slice indices: %d > %d", x, y)
  1331  						break L // only report one error, ok to continue
  1332  					}
  1333  				}
  1334  			}
  1335  		}
  1336  
  1337  	case *ast.TypeAssertExpr:
  1338  		check.expr(x, e.X)
  1339  		if x.mode == invalid {
  1340  			goto Error
  1341  		}
  1342  		xtyp, _ := x.typ.Underlying().(*Interface)
  1343  		if xtyp == nil {
  1344  			check.invalidOp(x.pos(), "%s is not an interface", x)
  1345  			goto Error
  1346  		}
  1347  		// x.(type) expressions are handled explicitly in type switches
  1348  		if e.Type == nil {
  1349  			check.invalidAST(e.Pos(), "use of .(type) outside type switch")
  1350  			goto Error
  1351  		}
  1352  		T := check.typ(e.Type)
  1353  		if T == Typ[Invalid] {
  1354  			goto Error
  1355  		}
  1356  		check.typeAssertion(x.pos(), x, xtyp, T)
  1357  		x.mode = commaok
  1358  		x.typ = T
  1359  
  1360  	case *ast.CallExpr:
  1361  		return check.call(x, e)
  1362  
  1363  	case *ast.StarExpr:
  1364  		check.exprOrType(x, e.X)
  1365  		switch x.mode {
  1366  		case invalid:
  1367  			goto Error
  1368  		case typexpr:
  1369  			x.typ = &Pointer{base: x.typ}
  1370  		default:
  1371  			if typ, ok := x.typ.Underlying().(*Pointer); ok {
  1372  				x.mode = variable
  1373  				x.typ = typ.base
  1374  			} else {
  1375  				check.invalidOp(x.pos(), "cannot indirect %s", x)
  1376  				goto Error
  1377  			}
  1378  		}
  1379  
  1380  	case *ast.UnaryExpr:
  1381  		check.expr(x, e.X)
  1382  		if x.mode == invalid {
  1383  			goto Error
  1384  		}
  1385  		check.unary(x, e, e.Op)
  1386  		if x.mode == invalid {
  1387  			goto Error
  1388  		}
  1389  		if e.Op == token.ARROW {
  1390  			x.expr = e
  1391  			return statement // receive operations may appear in statement context
  1392  		}
  1393  
  1394  	case *ast.BinaryExpr:
  1395  		check.binary(x, e, e.X, e.Y, e.Op)
  1396  		if x.mode == invalid {
  1397  			goto Error
  1398  		}
  1399  
  1400  	case *ast.KeyValueExpr:
  1401  		// key:value expressions are handled in composite literals
  1402  		check.invalidAST(e.Pos(), "no key:value expected")
  1403  		goto Error
  1404  
  1405  	case *ast.ArrayType, *ast.StructType, *ast.FuncType,
  1406  		*ast.InterfaceType, *ast.MapType, *ast.ChanType:
  1407  		x.mode = typexpr
  1408  		x.typ = check.typ(e)
  1409  		// Note: rawExpr (caller of exprInternal) will call check.recordTypeAndValue
  1410  		// even though check.typ has already called it. This is fine as both
  1411  		// times the same expression and type are recorded. It is also not a
  1412  		// performance issue because we only reach here for composite literal
  1413  		// types, which are comparatively rare.
  1414  
  1415  	default:
  1416  		panic(fmt.Sprintf("%s: unknown expression type %T", check.fset.Position(e.Pos()), e))
  1417  	}
  1418  
  1419  	// everything went well
  1420  	x.expr = e
  1421  	return expression
  1422  
  1423  Error:
  1424  	x.mode = invalid
  1425  	x.expr = e
  1426  	return statement // avoid follow-up errors
  1427  }
  1428  
  1429  // typeAssertion checks that x.(T) is legal; xtyp must be the type of x.
  1430  func (check *Checker) typeAssertion(pos token.Pos, x *operand, xtyp *Interface, T Type) {
  1431  	method, wrongType := assertableTo(xtyp, T)
  1432  	if method == nil {
  1433  		return
  1434  	}
  1435  
  1436  	var msg string
  1437  	if wrongType {
  1438  		msg = "wrong type for method"
  1439  	} else {
  1440  		msg = "missing method"
  1441  	}
  1442  	check.errorf(pos, "%s cannot have dynamic type %s (%s %s)", x, T, msg, method.name)
  1443  }
  1444  
  1445  // expr typechecks expression e and initializes x with the expression value.
  1446  // If an error occurred, x.mode is set to invalid.
  1447  //
  1448  func (check *Checker) expr(x *operand, e ast.Expr) {
  1449  	check.rawExpr(x, e, nil)
  1450  	var msg string
  1451  	switch x.mode {
  1452  	default:
  1453  		return
  1454  	case novalue:
  1455  		msg = "used as value"
  1456  	case builtin:
  1457  		msg = "must be called"
  1458  	case typexpr:
  1459  		msg = "is not an expression"
  1460  	}
  1461  	check.errorf(x.pos(), "%s %s", x, msg)
  1462  	x.mode = invalid
  1463  }
  1464  
  1465  // exprWithHint typechecks expression e and initializes x with the expression value.
  1466  // If an error occurred, x.mode is set to invalid.
  1467  // If hint != nil, it is the type of a composite literal element.
  1468  //
  1469  func (check *Checker) exprWithHint(x *operand, e ast.Expr, hint Type) {
  1470  	assert(hint != nil)
  1471  	check.rawExpr(x, e, hint)
  1472  	var msg string
  1473  	switch x.mode {
  1474  	default:
  1475  		return
  1476  	case novalue:
  1477  		msg = "used as value"
  1478  	case builtin:
  1479  		msg = "must be called"
  1480  	case typexpr:
  1481  		msg = "is not an expression"
  1482  	}
  1483  	check.errorf(x.pos(), "%s %s", x, msg)
  1484  	x.mode = invalid
  1485  }
  1486  
  1487  // exprOrType typechecks expression or type e and initializes x with the expression value or type.
  1488  // If an error occurred, x.mode is set to invalid.
  1489  //
  1490  func (check *Checker) exprOrType(x *operand, e ast.Expr) {
  1491  	check.rawExpr(x, e, nil)
  1492  	if x.mode == novalue {
  1493  		check.errorf(x.pos(), "%s used as value or type", x)
  1494  		x.mode = invalid
  1495  	}
  1496  }