github.com/zxy12/golang151_with_comment@v0.0.0-20190507085033-721809559d3c/net/http/server.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // HTTP server.  See RFC 2616.
     6  
     7  package http
     8  
     9  import (
    10  	"bufio"
    11  	"crypto/tls"
    12  	"errors"
    13  	"fmt"
    14  	"io"
    15  	"io/ioutil"
    16  	"log"
    17  	"net"
    18  	"net/textproto"
    19  	"net/url"
    20  	"os"
    21  	"path"
    22  	"runtime"
    23  	"strconv"
    24  	"strings"
    25  	"sync"
    26  	"sync/atomic"
    27  	"time"
    28  )
    29  
    30  // Errors introduced by the HTTP server.
    31  var (
    32  	ErrWriteAfterFlush = errors.New("Conn.Write called after Flush")
    33  	ErrBodyNotAllowed  = errors.New("http: request method or response status code does not allow body")
    34  	ErrHijacked        = errors.New("Conn has been hijacked")
    35  	ErrContentLength   = errors.New("Conn.Write wrote more than the declared Content-Length")
    36  )
    37  
    38  // Objects implementing the Handler interface can be
    39  // registered to serve a particular path or subtree
    40  // in the HTTP server.
    41  //
    42  // ServeHTTP should write reply headers and data to the ResponseWriter
    43  // and then return.  Returning signals that the request is finished
    44  // and that the HTTP server can move on to the next request on
    45  // the connection.
    46  //
    47  // If ServeHTTP panics, the server (the caller of ServeHTTP) assumes
    48  // that the effect of the panic was isolated to the active request.
    49  // It recovers the panic, logs a stack trace to the server error log,
    50  // and hangs up the connection.
    51  //
    52  type Handler interface {
    53  	ServeHTTP(ResponseWriter, *Request)
    54  }
    55  
    56  // A ResponseWriter interface is used by an HTTP handler to
    57  // construct an HTTP response.
    58  type ResponseWriter interface {
    59  	// Header returns the header map that will be sent by
    60  	// WriteHeader. Changing the header after a call to
    61  	// WriteHeader (or Write) has no effect unless the modified
    62  	// headers were declared as trailers by setting the
    63  	// "Trailer" header before the call to WriteHeader (see example).
    64  	// To suppress implicit response headers, set their value to nil.
    65  	Header() Header
    66  
    67  	// Write writes the data to the connection as part of an HTTP reply.
    68  	// If WriteHeader has not yet been called, Write calls WriteHeader(http.StatusOK)
    69  	// before writing the data.  If the Header does not contain a
    70  	// Content-Type line, Write adds a Content-Type set to the result of passing
    71  	// the initial 512 bytes of written data to DetectContentType.
    72  	Write([]byte) (int, error)
    73  
    74  	// WriteHeader sends an HTTP response header with status code.
    75  	// If WriteHeader is not called explicitly, the first call to Write
    76  	// will trigger an implicit WriteHeader(http.StatusOK).
    77  	// Thus explicit calls to WriteHeader are mainly used to
    78  	// send error codes.
    79  	WriteHeader(int)
    80  }
    81  
    82  // The Flusher interface is implemented by ResponseWriters that allow
    83  // an HTTP handler to flush buffered data to the client.
    84  //
    85  // Note that even for ResponseWriters that support Flush,
    86  // if the client is connected through an HTTP proxy,
    87  // the buffered data may not reach the client until the response
    88  // completes.
    89  type Flusher interface {
    90  	// Flush sends any buffered data to the client.
    91  	Flush()
    92  }
    93  
    94  // The Hijacker interface is implemented by ResponseWriters that allow
    95  // an HTTP handler to take over the connection.
    96  type Hijacker interface {
    97  	// Hijack lets the caller take over the connection.
    98  	// After a call to Hijack(), the HTTP server library
    99  	// will not do anything else with the connection.
   100  	//
   101  	// It becomes the caller's responsibility to manage
   102  	// and close the connection.
   103  	//
   104  	// The returned net.Conn may have read or write deadlines
   105  	// already set, depending on the configuration of the
   106  	// Server. It is the caller's responsibility to set
   107  	// or clear those deadlines as needed.
   108  	Hijack() (net.Conn, *bufio.ReadWriter, error)
   109  }
   110  
   111  // The CloseNotifier interface is implemented by ResponseWriters which
   112  // allow detecting when the underlying connection has gone away.
   113  //
   114  // This mechanism can be used to cancel long operations on the server
   115  // if the client has disconnected before the response is ready.
   116  type CloseNotifier interface {
   117  	// CloseNotify returns a channel that receives a single value
   118  	// when the client connection has gone away.
   119  	CloseNotify() <-chan bool
   120  }
   121  
   122  // A conn represents the server side of an HTTP connection.
   123  type conn struct {
   124  	remoteAddr string               // network address of remote side
   125  	server     *Server              // the Server on which the connection arrived
   126  	rwc        net.Conn             // i/o connection
   127  	w          io.Writer            // checkConnErrorWriter's copy of wrc, not zeroed on Hijack
   128  	werr       error                // any errors writing to w
   129  	sr         liveSwitchReader     // where the LimitReader reads from; usually the rwc
   130  	lr         *io.LimitedReader    // io.LimitReader(sr)
   131  	buf        *bufio.ReadWriter    // buffered(lr,rwc), reading from bufio->limitReader->sr->rwc
   132  	tlsState   *tls.ConnectionState // or nil when not using TLS
   133  	lastMethod string               // method of previous request, or ""
   134  
   135  	mu           sync.Mutex // guards the following
   136  	clientGone   bool       // if client has disconnected mid-request
   137  	closeNotifyc chan bool  // made lazily
   138  	hijackedv    bool       // connection has been hijacked by handler
   139  }
   140  
   141  func (c *conn) hijacked() bool {
   142  	c.mu.Lock()
   143  	defer c.mu.Unlock()
   144  	return c.hijackedv
   145  }
   146  
   147  func (c *conn) hijack() (rwc net.Conn, buf *bufio.ReadWriter, err error) {
   148  	c.mu.Lock()
   149  	defer c.mu.Unlock()
   150  	if c.hijackedv {
   151  		return nil, nil, ErrHijacked
   152  	}
   153  	if c.closeNotifyc != nil {
   154  		return nil, nil, errors.New("http: Hijack is incompatible with use of CloseNotifier")
   155  	}
   156  	c.hijackedv = true
   157  	rwc = c.rwc
   158  	buf = c.buf
   159  	c.rwc = nil
   160  	c.buf = nil
   161  	c.setState(rwc, StateHijacked)
   162  	return
   163  }
   164  
   165  func (c *conn) closeNotify() <-chan bool {
   166  	c.mu.Lock()
   167  	defer c.mu.Unlock()
   168  	if c.closeNotifyc == nil {
   169  		c.closeNotifyc = make(chan bool, 1)
   170  		if c.hijackedv {
   171  			// to obey the function signature, even though
   172  			// it'll never receive a value.
   173  			return c.closeNotifyc
   174  		}
   175  		pr, pw := io.Pipe()
   176  
   177  		readSource := c.sr.r
   178  		c.sr.Lock()
   179  		c.sr.r = pr
   180  		c.sr.Unlock()
   181  		go func() {
   182  			_, err := io.Copy(pw, readSource)
   183  			if err == nil {
   184  				err = io.EOF
   185  			}
   186  			pw.CloseWithError(err)
   187  			c.noteClientGone()
   188  		}()
   189  	}
   190  	return c.closeNotifyc
   191  }
   192  
   193  func (c *conn) noteClientGone() {
   194  	c.mu.Lock()
   195  	defer c.mu.Unlock()
   196  	if c.closeNotifyc != nil && !c.clientGone {
   197  		c.closeNotifyc <- true
   198  	}
   199  	c.clientGone = true
   200  }
   201  
   202  // A switchWriter can have its Writer changed at runtime.
   203  // It's not safe for concurrent Writes and switches.
   204  type switchWriter struct {
   205  	io.Writer
   206  }
   207  
   208  // A liveSwitchReader can have its Reader changed at runtime. It's
   209  // safe for concurrent reads and switches, if its mutex is held.
   210  type liveSwitchReader struct {
   211  	sync.Mutex
   212  	r io.Reader
   213  }
   214  
   215  func (sr *liveSwitchReader) Read(p []byte) (n int, err error) {
   216  	sr.Lock()
   217  	r := sr.r
   218  	sr.Unlock()
   219  	return r.Read(p)
   220  }
   221  
   222  // This should be >= 512 bytes for DetectContentType,
   223  // but otherwise it's somewhat arbitrary.
   224  const bufferBeforeChunkingSize = 2048
   225  
   226  // chunkWriter writes to a response's conn buffer, and is the writer
   227  // wrapped by the response.bufw buffered writer.
   228  //
   229  // chunkWriter also is responsible for finalizing the Header, including
   230  // conditionally setting the Content-Type and setting a Content-Length
   231  // in cases where the handler's final output is smaller than the buffer
   232  // size. It also conditionally adds chunk headers, when in chunking mode.
   233  //
   234  // See the comment above (*response).Write for the entire write flow.
   235  type chunkWriter struct {
   236  	res *response
   237  
   238  	// header is either nil or a deep clone of res.handlerHeader
   239  	// at the time of res.WriteHeader, if res.WriteHeader is
   240  	// called and extra buffering is being done to calculate
   241  	// Content-Type and/or Content-Length.
   242  	header Header
   243  
   244  	// wroteHeader tells whether the header's been written to "the
   245  	// wire" (or rather: w.conn.buf). this is unlike
   246  	// (*response).wroteHeader, which tells only whether it was
   247  	// logically written.
   248  	wroteHeader bool
   249  
   250  	// set by the writeHeader method:
   251  	chunking bool // using chunked transfer encoding for reply body
   252  }
   253  
   254  var (
   255  	crlf       = []byte("\r\n")
   256  	colonSpace = []byte(": ")
   257  )
   258  
   259  func (cw *chunkWriter) Write(p []byte) (n int, err error) {
   260  	if !cw.wroteHeader {
   261  		cw.writeHeader(p)
   262  	}
   263  	if cw.res.req.Method == "HEAD" {
   264  		// Eat writes.
   265  		return len(p), nil
   266  	}
   267  	if cw.chunking {
   268  		_, err = fmt.Fprintf(cw.res.conn.buf, "%x\r\n", len(p))
   269  		if err != nil {
   270  			cw.res.conn.rwc.Close()
   271  			return
   272  		}
   273  	}
   274  	n, err = cw.res.conn.buf.Write(p)
   275  	if cw.chunking && err == nil {
   276  		_, err = cw.res.conn.buf.Write(crlf)
   277  	}
   278  	if err != nil {
   279  		cw.res.conn.rwc.Close()
   280  	}
   281  	return
   282  }
   283  
   284  func (cw *chunkWriter) flush() {
   285  	if !cw.wroteHeader {
   286  		cw.writeHeader(nil)
   287  	}
   288  	cw.res.conn.buf.Flush()
   289  }
   290  
   291  func (cw *chunkWriter) close() {
   292  	if !cw.wroteHeader {
   293  		cw.writeHeader(nil)
   294  	}
   295  	if cw.chunking {
   296  		bw := cw.res.conn.buf // conn's bufio writer
   297  		// zero chunk to mark EOF
   298  		bw.WriteString("0\r\n")
   299  		if len(cw.res.trailers) > 0 {
   300  			trailers := make(Header)
   301  			for _, h := range cw.res.trailers {
   302  				if vv := cw.res.handlerHeader[h]; len(vv) > 0 {
   303  					trailers[h] = vv
   304  				}
   305  			}
   306  			trailers.Write(bw) // the writer handles noting errors
   307  		}
   308  		// final blank line after the trailers (whether
   309  		// present or not)
   310  		bw.WriteString("\r\n")
   311  	}
   312  }
   313  
   314  // A response represents the server side of an HTTP response.
   315  type response struct {
   316  	conn          *conn
   317  	req           *Request // request for this response
   318  	wroteHeader   bool     // reply header has been (logically) written
   319  	wroteContinue bool     // 100 Continue response was written
   320  
   321  	w  *bufio.Writer // buffers output in chunks to chunkWriter
   322  	cw chunkWriter
   323  	sw *switchWriter // of the bufio.Writer, for return to putBufioWriter
   324  
   325  	// handlerHeader is the Header that Handlers get access to,
   326  	// which may be retained and mutated even after WriteHeader.
   327  	// handlerHeader is copied into cw.header at WriteHeader
   328  	// time, and privately mutated thereafter.
   329  	handlerHeader Header
   330  	calledHeader  bool // handler accessed handlerHeader via Header
   331  
   332  	written       int64 // number of bytes written in body
   333  	contentLength int64 // explicitly-declared Content-Length; or -1
   334  	status        int   // status code passed to WriteHeader
   335  
   336  	// close connection after this reply.  set on request and
   337  	// updated after response from handler if there's a
   338  	// "Connection: keep-alive" response header and a
   339  	// Content-Length.
   340  	closeAfterReply bool
   341  
   342  	// requestBodyLimitHit is set by requestTooLarge when
   343  	// maxBytesReader hits its max size. It is checked in
   344  	// WriteHeader, to make sure we don't consume the
   345  	// remaining request body to try to advance to the next HTTP
   346  	// request. Instead, when this is set, we stop reading
   347  	// subsequent requests on this connection and stop reading
   348  	// input from it.
   349  	requestBodyLimitHit bool
   350  
   351  	// trailers are the headers to be sent after the handler
   352  	// finishes writing the body.  This field is initialized from
   353  	// the Trailer response header when the response header is
   354  	// written.
   355  	trailers []string
   356  
   357  	handlerDone bool // set true when the handler exits
   358  
   359  	// Buffers for Date and Content-Length
   360  	dateBuf [len(TimeFormat)]byte
   361  	clenBuf [10]byte
   362  }
   363  
   364  // declareTrailer is called for each Trailer header when the
   365  // response header is written. It notes that a header will need to be
   366  // written in the trailers at the end of the response.
   367  func (w *response) declareTrailer(k string) {
   368  	k = CanonicalHeaderKey(k)
   369  	switch k {
   370  	case "Transfer-Encoding", "Content-Length", "Trailer":
   371  		// Forbidden by RFC 2616 14.40.
   372  		return
   373  	}
   374  	w.trailers = append(w.trailers, k)
   375  }
   376  
   377  // requestTooLarge is called by maxBytesReader when too much input has
   378  // been read from the client.
   379  func (w *response) requestTooLarge() {
   380  	w.closeAfterReply = true
   381  	w.requestBodyLimitHit = true
   382  	if !w.wroteHeader {
   383  		w.Header().Set("Connection", "close")
   384  	}
   385  }
   386  
   387  // needsSniff reports whether a Content-Type still needs to be sniffed.
   388  func (w *response) needsSniff() bool {
   389  	_, haveType := w.handlerHeader["Content-Type"]
   390  	return !w.cw.wroteHeader && !haveType && w.written < sniffLen
   391  }
   392  
   393  // writerOnly hides an io.Writer value's optional ReadFrom method
   394  // from io.Copy.
   395  type writerOnly struct {
   396  	io.Writer
   397  }
   398  
   399  func srcIsRegularFile(src io.Reader) (isRegular bool, err error) {
   400  	switch v := src.(type) {
   401  	case *os.File:
   402  		fi, err := v.Stat()
   403  		if err != nil {
   404  			return false, err
   405  		}
   406  		return fi.Mode().IsRegular(), nil
   407  	case *io.LimitedReader:
   408  		return srcIsRegularFile(v.R)
   409  	default:
   410  		return
   411  	}
   412  }
   413  
   414  // ReadFrom is here to optimize copying from an *os.File regular file
   415  // to a *net.TCPConn with sendfile.
   416  func (w *response) ReadFrom(src io.Reader) (n int64, err error) {
   417  	// Our underlying w.conn.rwc is usually a *TCPConn (with its
   418  	// own ReadFrom method). If not, or if our src isn't a regular
   419  	// file, just fall back to the normal copy method.
   420  	rf, ok := w.conn.rwc.(io.ReaderFrom)
   421  	regFile, err := srcIsRegularFile(src)
   422  	if err != nil {
   423  		return 0, err
   424  	}
   425  	if !ok || !regFile {
   426  		return io.Copy(writerOnly{w}, src)
   427  	}
   428  
   429  	// sendfile path:
   430  
   431  	if !w.wroteHeader {
   432  		w.WriteHeader(StatusOK)
   433  	}
   434  
   435  	if w.needsSniff() {
   436  		n0, err := io.Copy(writerOnly{w}, io.LimitReader(src, sniffLen))
   437  		n += n0
   438  		if err != nil {
   439  			return n, err
   440  		}
   441  	}
   442  
   443  	w.w.Flush()  // get rid of any previous writes
   444  	w.cw.flush() // make sure Header is written; flush data to rwc
   445  
   446  	// Now that cw has been flushed, its chunking field is guaranteed initialized.
   447  	if !w.cw.chunking && w.bodyAllowed() {
   448  		n0, err := rf.ReadFrom(src)
   449  		n += n0
   450  		w.written += n0
   451  		return n, err
   452  	}
   453  
   454  	n0, err := io.Copy(writerOnly{w}, src)
   455  	n += n0
   456  	return n, err
   457  }
   458  
   459  // noLimit is an effective infinite upper bound for io.LimitedReader
   460  const noLimit int64 = (1 << 63) - 1
   461  
   462  // debugServerConnections controls whether all server connections are wrapped
   463  // with a verbose logging wrapper.
   464  const debugServerConnections = false
   465  
   466  // Create new connection from rwc.
   467  func (srv *Server) newConn(rwc net.Conn) (c *conn, err error) {
   468  	c = new(conn)
   469  	c.remoteAddr = rwc.RemoteAddr().String()
   470  	c.server = srv
   471  	c.rwc = rwc
   472  	c.w = rwc
   473  	if debugServerConnections {
   474  		c.rwc = newLoggingConn("server", c.rwc)
   475  	}
   476  	c.sr.r = c.rwc
   477  	c.lr = io.LimitReader(&c.sr, noLimit).(*io.LimitedReader)
   478  	br := newBufioReader(c.lr)
   479  	bw := newBufioWriterSize(checkConnErrorWriter{c}, 4<<10)
   480  	c.buf = bufio.NewReadWriter(br, bw)
   481  	return c, nil
   482  }
   483  
   484  var (
   485  	bufioReaderPool   sync.Pool
   486  	bufioWriter2kPool sync.Pool
   487  	bufioWriter4kPool sync.Pool
   488  )
   489  
   490  func bufioWriterPool(size int) *sync.Pool {
   491  	switch size {
   492  	case 2 << 10:
   493  		return &bufioWriter2kPool
   494  	case 4 << 10:
   495  		return &bufioWriter4kPool
   496  	}
   497  	return nil
   498  }
   499  
   500  func newBufioReader(r io.Reader) *bufio.Reader {
   501  	if v := bufioReaderPool.Get(); v != nil {
   502  		br := v.(*bufio.Reader)
   503  		br.Reset(r)
   504  		return br
   505  	}
   506  	// Note: if this reader size is every changed, update
   507  	// TestHandlerBodyClose's assumptions.
   508  	return bufio.NewReader(r)
   509  }
   510  
   511  func putBufioReader(br *bufio.Reader) {
   512  	br.Reset(nil)
   513  	bufioReaderPool.Put(br)
   514  }
   515  
   516  func newBufioWriterSize(w io.Writer, size int) *bufio.Writer {
   517  	pool := bufioWriterPool(size)
   518  	if pool != nil {
   519  		if v := pool.Get(); v != nil {
   520  			bw := v.(*bufio.Writer)
   521  			bw.Reset(w)
   522  			return bw
   523  		}
   524  	}
   525  	return bufio.NewWriterSize(w, size)
   526  }
   527  
   528  func putBufioWriter(bw *bufio.Writer) {
   529  	bw.Reset(nil)
   530  	if pool := bufioWriterPool(bw.Available()); pool != nil {
   531  		pool.Put(bw)
   532  	}
   533  }
   534  
   535  // DefaultMaxHeaderBytes is the maximum permitted size of the headers
   536  // in an HTTP request.
   537  // This can be overridden by setting Server.MaxHeaderBytes.
   538  const DefaultMaxHeaderBytes = 1 << 20 // 1 MB
   539  
   540  func (srv *Server) maxHeaderBytes() int {
   541  	if srv.MaxHeaderBytes > 0 {
   542  		return srv.MaxHeaderBytes
   543  	}
   544  	return DefaultMaxHeaderBytes
   545  }
   546  
   547  func (srv *Server) initialLimitedReaderSize() int64 {
   548  	return int64(srv.maxHeaderBytes()) + 4096 // bufio slop
   549  }
   550  
   551  // wrapper around io.ReaderCloser which on first read, sends an
   552  // HTTP/1.1 100 Continue header
   553  type expectContinueReader struct {
   554  	resp       *response
   555  	readCloser io.ReadCloser
   556  	closed     bool
   557  	sawEOF     bool
   558  }
   559  
   560  func (ecr *expectContinueReader) Read(p []byte) (n int, err error) {
   561  	if ecr.closed {
   562  		return 0, ErrBodyReadAfterClose
   563  	}
   564  	if !ecr.resp.wroteContinue && !ecr.resp.conn.hijacked() {
   565  		ecr.resp.wroteContinue = true
   566  		ecr.resp.conn.buf.WriteString("HTTP/1.1 100 Continue\r\n\r\n")
   567  		ecr.resp.conn.buf.Flush()
   568  	}
   569  	n, err = ecr.readCloser.Read(p)
   570  	if err == io.EOF {
   571  		ecr.sawEOF = true
   572  	}
   573  	return
   574  }
   575  
   576  func (ecr *expectContinueReader) Close() error {
   577  	ecr.closed = true
   578  	return ecr.readCloser.Close()
   579  }
   580  
   581  // TimeFormat is the time format to use with
   582  // time.Parse and time.Time.Format when parsing
   583  // or generating times in HTTP headers.
   584  // It is like time.RFC1123 but hard codes GMT as the time zone.
   585  const TimeFormat = "Mon, 02 Jan 2006 15:04:05 GMT"
   586  
   587  // appendTime is a non-allocating version of []byte(t.UTC().Format(TimeFormat))
   588  func appendTime(b []byte, t time.Time) []byte {
   589  	const days = "SunMonTueWedThuFriSat"
   590  	const months = "JanFebMarAprMayJunJulAugSepOctNovDec"
   591  
   592  	t = t.UTC()
   593  	yy, mm, dd := t.Date()
   594  	hh, mn, ss := t.Clock()
   595  	day := days[3*t.Weekday():]
   596  	mon := months[3*(mm-1):]
   597  
   598  	return append(b,
   599  		day[0], day[1], day[2], ',', ' ',
   600  		byte('0'+dd/10), byte('0'+dd%10), ' ',
   601  		mon[0], mon[1], mon[2], ' ',
   602  		byte('0'+yy/1000), byte('0'+(yy/100)%10), byte('0'+(yy/10)%10), byte('0'+yy%10), ' ',
   603  		byte('0'+hh/10), byte('0'+hh%10), ':',
   604  		byte('0'+mn/10), byte('0'+mn%10), ':',
   605  		byte('0'+ss/10), byte('0'+ss%10), ' ',
   606  		'G', 'M', 'T')
   607  }
   608  
   609  var errTooLarge = errors.New("http: request too large")
   610  
   611  // Read next request from connection.
   612  func (c *conn) readRequest() (w *response, err error) {
   613  	if c.hijacked() {
   614  		return nil, ErrHijacked
   615  	}
   616  
   617  	if d := c.server.ReadTimeout; d != 0 {
   618  		c.rwc.SetReadDeadline(time.Now().Add(d))
   619  	}
   620  	if d := c.server.WriteTimeout; d != 0 {
   621  		defer func() {
   622  			c.rwc.SetWriteDeadline(time.Now().Add(d))
   623  		}()
   624  	}
   625  
   626  	c.lr.N = c.server.initialLimitedReaderSize()
   627  	if c.lastMethod == "POST" {
   628  		// RFC 2616 section 4.1 tolerance for old buggy clients.
   629  		peek, _ := c.buf.Reader.Peek(4) // ReadRequest will get err below
   630  		c.buf.Reader.Discard(numLeadingCRorLF(peek))
   631  	}
   632  	var req *Request
   633  	if req, err = ReadRequest(c.buf.Reader); err != nil {
   634  		if c.lr.N == 0 {
   635  			return nil, errTooLarge
   636  		}
   637  		return nil, err
   638  	}
   639  	c.lr.N = noLimit
   640  	c.lastMethod = req.Method
   641  
   642  	req.RemoteAddr = c.remoteAddr
   643  	req.TLS = c.tlsState
   644  	if body, ok := req.Body.(*body); ok {
   645  		body.doEarlyClose = true
   646  	}
   647  
   648  	w = &response{
   649  		conn:          c,
   650  		req:           req,
   651  		handlerHeader: make(Header),
   652  		contentLength: -1,
   653  	}
   654  	w.cw.res = w
   655  	w.w = newBufioWriterSize(&w.cw, bufferBeforeChunkingSize)
   656  	return w, nil
   657  }
   658  
   659  func (w *response) Header() Header {
   660  	if w.cw.header == nil && w.wroteHeader && !w.cw.wroteHeader {
   661  		// Accessing the header between logically writing it
   662  		// and physically writing it means we need to allocate
   663  		// a clone to snapshot the logically written state.
   664  		w.cw.header = w.handlerHeader.clone()
   665  	}
   666  	w.calledHeader = true
   667  	return w.handlerHeader
   668  }
   669  
   670  // maxPostHandlerReadBytes is the max number of Request.Body bytes not
   671  // consumed by a handler that the server will read from the client
   672  // in order to keep a connection alive.  If there are more bytes than
   673  // this then the server to be paranoid instead sends a "Connection:
   674  // close" response.
   675  //
   676  // This number is approximately what a typical machine's TCP buffer
   677  // size is anyway.  (if we have the bytes on the machine, we might as
   678  // well read them)
   679  const maxPostHandlerReadBytes = 256 << 10
   680  
   681  func (w *response) WriteHeader(code int) {
   682  	if w.conn.hijacked() {
   683  		w.conn.server.logf("http: response.WriteHeader on hijacked connection")
   684  		return
   685  	}
   686  	if w.wroteHeader {
   687  		w.conn.server.logf("http: multiple response.WriteHeader calls")
   688  		return
   689  	}
   690  	w.wroteHeader = true
   691  	w.status = code
   692  
   693  	if w.calledHeader && w.cw.header == nil {
   694  		w.cw.header = w.handlerHeader.clone()
   695  	}
   696  
   697  	if cl := w.handlerHeader.get("Content-Length"); cl != "" {
   698  		v, err := strconv.ParseInt(cl, 10, 64)
   699  		if err == nil && v >= 0 {
   700  			w.contentLength = v
   701  		} else {
   702  			w.conn.server.logf("http: invalid Content-Length of %q", cl)
   703  			w.handlerHeader.Del("Content-Length")
   704  		}
   705  	}
   706  }
   707  
   708  // extraHeader is the set of headers sometimes added by chunkWriter.writeHeader.
   709  // This type is used to avoid extra allocations from cloning and/or populating
   710  // the response Header map and all its 1-element slices.
   711  type extraHeader struct {
   712  	contentType      string
   713  	connection       string
   714  	transferEncoding string
   715  	date             []byte // written if not nil
   716  	contentLength    []byte // written if not nil
   717  }
   718  
   719  // Sorted the same as extraHeader.Write's loop.
   720  var extraHeaderKeys = [][]byte{
   721  	[]byte("Content-Type"),
   722  	[]byte("Connection"),
   723  	[]byte("Transfer-Encoding"),
   724  }
   725  
   726  var (
   727  	headerContentLength = []byte("Content-Length: ")
   728  	headerDate          = []byte("Date: ")
   729  )
   730  
   731  // Write writes the headers described in h to w.
   732  //
   733  // This method has a value receiver, despite the somewhat large size
   734  // of h, because it prevents an allocation. The escape analysis isn't
   735  // smart enough to realize this function doesn't mutate h.
   736  func (h extraHeader) Write(w *bufio.Writer) {
   737  	if h.date != nil {
   738  		w.Write(headerDate)
   739  		w.Write(h.date)
   740  		w.Write(crlf)
   741  	}
   742  	if h.contentLength != nil {
   743  		w.Write(headerContentLength)
   744  		w.Write(h.contentLength)
   745  		w.Write(crlf)
   746  	}
   747  	for i, v := range []string{h.contentType, h.connection, h.transferEncoding} {
   748  		if v != "" {
   749  			w.Write(extraHeaderKeys[i])
   750  			w.Write(colonSpace)
   751  			w.WriteString(v)
   752  			w.Write(crlf)
   753  		}
   754  	}
   755  }
   756  
   757  // writeHeader finalizes the header sent to the client and writes it
   758  // to cw.res.conn.buf.
   759  //
   760  // p is not written by writeHeader, but is the first chunk of the body
   761  // that will be written.  It is sniffed for a Content-Type if none is
   762  // set explicitly.  It's also used to set the Content-Length, if the
   763  // total body size was small and the handler has already finished
   764  // running.
   765  func (cw *chunkWriter) writeHeader(p []byte) {
   766  	if cw.wroteHeader {
   767  		return
   768  	}
   769  	cw.wroteHeader = true
   770  
   771  	w := cw.res
   772  	keepAlivesEnabled := w.conn.server.doKeepAlives()
   773  	isHEAD := w.req.Method == "HEAD"
   774  
   775  	// header is written out to w.conn.buf below. Depending on the
   776  	// state of the handler, we either own the map or not. If we
   777  	// don't own it, the exclude map is created lazily for
   778  	// WriteSubset to remove headers. The setHeader struct holds
   779  	// headers we need to add.
   780  	header := cw.header
   781  	owned := header != nil
   782  	if !owned {
   783  		header = w.handlerHeader
   784  	}
   785  	var excludeHeader map[string]bool
   786  	delHeader := func(key string) {
   787  		if owned {
   788  			header.Del(key)
   789  			return
   790  		}
   791  		if _, ok := header[key]; !ok {
   792  			return
   793  		}
   794  		if excludeHeader == nil {
   795  			excludeHeader = make(map[string]bool)
   796  		}
   797  		excludeHeader[key] = true
   798  	}
   799  	var setHeader extraHeader
   800  
   801  	trailers := false
   802  	for _, v := range cw.header["Trailer"] {
   803  		trailers = true
   804  		foreachHeaderElement(v, cw.res.declareTrailer)
   805  	}
   806  
   807  	te := header.get("Transfer-Encoding")
   808  	hasTE := te != ""
   809  
   810  	// If the handler is done but never sent a Content-Length
   811  	// response header and this is our first (and last) write, set
   812  	// it, even to zero. This helps HTTP/1.0 clients keep their
   813  	// "keep-alive" connections alive.
   814  	// Exceptions: 304/204/1xx responses never get Content-Length, and if
   815  	// it was a HEAD request, we don't know the difference between
   816  	// 0 actual bytes and 0 bytes because the handler noticed it
   817  	// was a HEAD request and chose not to write anything.  So for
   818  	// HEAD, the handler should either write the Content-Length or
   819  	// write non-zero bytes.  If it's actually 0 bytes and the
   820  	// handler never looked at the Request.Method, we just don't
   821  	// send a Content-Length header.
   822  	// Further, we don't send an automatic Content-Length if they
   823  	// set a Transfer-Encoding, because they're generally incompatible.
   824  	if w.handlerDone && !trailers && !hasTE && bodyAllowedForStatus(w.status) && header.get("Content-Length") == "" && (!isHEAD || len(p) > 0) {
   825  		w.contentLength = int64(len(p))
   826  		setHeader.contentLength = strconv.AppendInt(cw.res.clenBuf[:0], int64(len(p)), 10)
   827  	}
   828  
   829  	// If this was an HTTP/1.0 request with keep-alive and we sent a
   830  	// Content-Length back, we can make this a keep-alive response ...
   831  	if w.req.wantsHttp10KeepAlive() && keepAlivesEnabled {
   832  		sentLength := header.get("Content-Length") != ""
   833  		if sentLength && header.get("Connection") == "keep-alive" {
   834  			w.closeAfterReply = false
   835  		}
   836  	}
   837  
   838  	// Check for a explicit (and valid) Content-Length header.
   839  	hasCL := w.contentLength != -1
   840  
   841  	if w.req.wantsHttp10KeepAlive() && (isHEAD || hasCL) {
   842  		_, connectionHeaderSet := header["Connection"]
   843  		if !connectionHeaderSet {
   844  			setHeader.connection = "keep-alive"
   845  		}
   846  	} else if !w.req.ProtoAtLeast(1, 1) || w.req.wantsClose() {
   847  		w.closeAfterReply = true
   848  	}
   849  
   850  	if header.get("Connection") == "close" || !keepAlivesEnabled {
   851  		w.closeAfterReply = true
   852  	}
   853  
   854  	// If the client wanted a 100-continue but we never sent it to
   855  	// them (or, more strictly: we never finished reading their
   856  	// request body), don't reuse this connection because it's now
   857  	// in an unknown state: we might be sending this response at
   858  	// the same time the client is now sending its request body
   859  	// after a timeout.  (Some HTTP clients send Expect:
   860  	// 100-continue but knowing that some servers don't support
   861  	// it, the clients set a timer and send the body later anyway)
   862  	// If we haven't seen EOF, we can't skip over the unread body
   863  	// because we don't know if the next bytes on the wire will be
   864  	// the body-following-the-timer or the subsequent request.
   865  	// See Issue 11549.
   866  	if ecr, ok := w.req.Body.(*expectContinueReader); ok && !ecr.sawEOF {
   867  		w.closeAfterReply = true
   868  	}
   869  
   870  	// Per RFC 2616, we should consume the request body before
   871  	// replying, if the handler hasn't already done so.  But we
   872  	// don't want to do an unbounded amount of reading here for
   873  	// DoS reasons, so we only try up to a threshold.
   874  	if w.req.ContentLength != 0 && !w.closeAfterReply {
   875  		var discard, tooBig bool
   876  
   877  		switch bdy := w.req.Body.(type) {
   878  		case *expectContinueReader:
   879  			if bdy.resp.wroteContinue {
   880  				discard = true
   881  			}
   882  		case *body:
   883  			bdy.mu.Lock()
   884  			switch {
   885  			case bdy.closed:
   886  				if !bdy.sawEOF {
   887  					// Body was closed in handler with non-EOF error.
   888  					w.closeAfterReply = true
   889  				}
   890  			case bdy.unreadDataSizeLocked() >= maxPostHandlerReadBytes:
   891  				tooBig = true
   892  			default:
   893  				discard = true
   894  			}
   895  			bdy.mu.Unlock()
   896  		default:
   897  			discard = true
   898  		}
   899  
   900  		if discard {
   901  			_, err := io.CopyN(ioutil.Discard, w.req.Body, maxPostHandlerReadBytes+1)
   902  			switch err {
   903  			case nil:
   904  				// There must be even more data left over.
   905  				tooBig = true
   906  			case ErrBodyReadAfterClose:
   907  				// Body was already consumed and closed.
   908  			case io.EOF:
   909  				// The remaining body was just consumed, close it.
   910  				err = w.req.Body.Close()
   911  				if err != nil {
   912  					w.closeAfterReply = true
   913  				}
   914  			default:
   915  				// Some other kind of error occured, like a read timeout, or
   916  				// corrupt chunked encoding. In any case, whatever remains
   917  				// on the wire must not be parsed as another HTTP request.
   918  				w.closeAfterReply = true
   919  			}
   920  		}
   921  
   922  		if tooBig {
   923  			w.requestTooLarge()
   924  			delHeader("Connection")
   925  			setHeader.connection = "close"
   926  		}
   927  	}
   928  
   929  	code := w.status
   930  	if bodyAllowedForStatus(code) {
   931  		// If no content type, apply sniffing algorithm to body.
   932  		_, haveType := header["Content-Type"]
   933  		if !haveType && !hasTE {
   934  			setHeader.contentType = DetectContentType(p)
   935  		}
   936  	} else {
   937  		for _, k := range suppressedHeaders(code) {
   938  			delHeader(k)
   939  		}
   940  	}
   941  
   942  	if _, ok := header["Date"]; !ok {
   943  		setHeader.date = appendTime(cw.res.dateBuf[:0], time.Now())
   944  	}
   945  
   946  	if hasCL && hasTE && te != "identity" {
   947  		// TODO: return an error if WriteHeader gets a return parameter
   948  		// For now just ignore the Content-Length.
   949  		w.conn.server.logf("http: WriteHeader called with both Transfer-Encoding of %q and a Content-Length of %d",
   950  			te, w.contentLength)
   951  		delHeader("Content-Length")
   952  		hasCL = false
   953  	}
   954  
   955  	if w.req.Method == "HEAD" || !bodyAllowedForStatus(code) {
   956  		// do nothing
   957  	} else if code == StatusNoContent {
   958  		delHeader("Transfer-Encoding")
   959  	} else if hasCL {
   960  		delHeader("Transfer-Encoding")
   961  	} else if w.req.ProtoAtLeast(1, 1) {
   962  		// HTTP/1.1 or greater: Transfer-Encoding has been set to identity,  and no
   963  		// content-length has been provided. The connection must be closed after the
   964  		// reply is written, and no chunking is to be done. This is the setup
   965  		// recommended in the Server-Sent Events candidate recommendation 11,
   966  		// section 8.
   967  		if hasTE && te == "identity" {
   968  			cw.chunking = false
   969  			w.closeAfterReply = true
   970  		} else {
   971  			// HTTP/1.1 or greater: use chunked transfer encoding
   972  			// to avoid closing the connection at EOF.
   973  			cw.chunking = true
   974  			setHeader.transferEncoding = "chunked"
   975  		}
   976  	} else {
   977  		// HTTP version < 1.1: cannot do chunked transfer
   978  		// encoding and we don't know the Content-Length so
   979  		// signal EOF by closing connection.
   980  		w.closeAfterReply = true
   981  		delHeader("Transfer-Encoding") // in case already set
   982  	}
   983  
   984  	// Cannot use Content-Length with non-identity Transfer-Encoding.
   985  	if cw.chunking {
   986  		delHeader("Content-Length")
   987  	}
   988  	if !w.req.ProtoAtLeast(1, 0) {
   989  		return
   990  	}
   991  
   992  	if w.closeAfterReply && (!keepAlivesEnabled || !hasToken(cw.header.get("Connection"), "close")) {
   993  		delHeader("Connection")
   994  		if w.req.ProtoAtLeast(1, 1) {
   995  			setHeader.connection = "close"
   996  		}
   997  	}
   998  
   999  	w.conn.buf.WriteString(statusLine(w.req, code))
  1000  	cw.header.WriteSubset(w.conn.buf, excludeHeader)
  1001  	setHeader.Write(w.conn.buf.Writer)
  1002  	w.conn.buf.Write(crlf)
  1003  }
  1004  
  1005  // foreachHeaderElement splits v according to the "#rule" construction
  1006  // in RFC 2616 section 2.1 and calls fn for each non-empty element.
  1007  func foreachHeaderElement(v string, fn func(string)) {
  1008  	v = textproto.TrimString(v)
  1009  	if v == "" {
  1010  		return
  1011  	}
  1012  	if !strings.Contains(v, ",") {
  1013  		fn(v)
  1014  		return
  1015  	}
  1016  	for _, f := range strings.Split(v, ",") {
  1017  		if f = textproto.TrimString(f); f != "" {
  1018  			fn(f)
  1019  		}
  1020  	}
  1021  }
  1022  
  1023  // statusLines is a cache of Status-Line strings, keyed by code (for
  1024  // HTTP/1.1) or negative code (for HTTP/1.0). This is faster than a
  1025  // map keyed by struct of two fields. This map's max size is bounded
  1026  // by 2*len(statusText), two protocol types for each known official
  1027  // status code in the statusText map.
  1028  var (
  1029  	statusMu    sync.RWMutex
  1030  	statusLines = make(map[int]string)
  1031  )
  1032  
  1033  // statusLine returns a response Status-Line (RFC 2616 Section 6.1)
  1034  // for the given request and response status code.
  1035  func statusLine(req *Request, code int) string {
  1036  	// Fast path:
  1037  	key := code
  1038  	proto11 := req.ProtoAtLeast(1, 1)
  1039  	if !proto11 {
  1040  		key = -key
  1041  	}
  1042  	statusMu.RLock()
  1043  	line, ok := statusLines[key]
  1044  	statusMu.RUnlock()
  1045  	if ok {
  1046  		return line
  1047  	}
  1048  
  1049  	// Slow path:
  1050  	proto := "HTTP/1.0"
  1051  	if proto11 {
  1052  		proto = "HTTP/1.1"
  1053  	}
  1054  	codestring := strconv.Itoa(code)
  1055  	text, ok := statusText[code]
  1056  	if !ok {
  1057  		text = "status code " + codestring
  1058  	}
  1059  	line = proto + " " + codestring + " " + text + "\r\n"
  1060  	if ok {
  1061  		statusMu.Lock()
  1062  		defer statusMu.Unlock()
  1063  		statusLines[key] = line
  1064  	}
  1065  	return line
  1066  }
  1067  
  1068  // bodyAllowed reports whether a Write is allowed for this response type.
  1069  // It's illegal to call this before the header has been flushed.
  1070  func (w *response) bodyAllowed() bool {
  1071  	if !w.wroteHeader {
  1072  		panic("")
  1073  	}
  1074  	return bodyAllowedForStatus(w.status)
  1075  }
  1076  
  1077  // The Life Of A Write is like this:
  1078  //
  1079  // Handler starts. No header has been sent. The handler can either
  1080  // write a header, or just start writing.  Writing before sending a header
  1081  // sends an implicitly empty 200 OK header.
  1082  //
  1083  // If the handler didn't declare a Content-Length up front, we either
  1084  // go into chunking mode or, if the handler finishes running before
  1085  // the chunking buffer size, we compute a Content-Length and send that
  1086  // in the header instead.
  1087  //
  1088  // Likewise, if the handler didn't set a Content-Type, we sniff that
  1089  // from the initial chunk of output.
  1090  //
  1091  // The Writers are wired together like:
  1092  //
  1093  // 1. *response (the ResponseWriter) ->
  1094  // 2. (*response).w, a *bufio.Writer of bufferBeforeChunkingSize bytes
  1095  // 3. chunkWriter.Writer (whose writeHeader finalizes Content-Length/Type)
  1096  //    and which writes the chunk headers, if needed.
  1097  // 4. conn.buf, a bufio.Writer of default (4kB) bytes, writing to ->
  1098  // 5. checkConnErrorWriter{c}, which notes any non-nil error on Write
  1099  //    and populates c.werr with it if so. but otherwise writes to:
  1100  // 6. the rwc, the net.Conn.
  1101  //
  1102  // TODO(bradfitz): short-circuit some of the buffering when the
  1103  // initial header contains both a Content-Type and Content-Length.
  1104  // Also short-circuit in (1) when the header's been sent and not in
  1105  // chunking mode, writing directly to (4) instead, if (2) has no
  1106  // buffered data.  More generally, we could short-circuit from (1) to
  1107  // (3) even in chunking mode if the write size from (1) is over some
  1108  // threshold and nothing is in (2).  The answer might be mostly making
  1109  // bufferBeforeChunkingSize smaller and having bufio's fast-paths deal
  1110  // with this instead.
  1111  func (w *response) Write(data []byte) (n int, err error) {
  1112  	return w.write(len(data), data, "")
  1113  }
  1114  
  1115  func (w *response) WriteString(data string) (n int, err error) {
  1116  	return w.write(len(data), nil, data)
  1117  }
  1118  
  1119  // either dataB or dataS is non-zero.
  1120  func (w *response) write(lenData int, dataB []byte, dataS string) (n int, err error) {
  1121  	if w.conn.hijacked() {
  1122  		w.conn.server.logf("http: response.Write on hijacked connection")
  1123  		return 0, ErrHijacked
  1124  	}
  1125  	if !w.wroteHeader {
  1126  		w.WriteHeader(StatusOK)
  1127  	}
  1128  	if lenData == 0 {
  1129  		return 0, nil
  1130  	}
  1131  	if !w.bodyAllowed() {
  1132  		return 0, ErrBodyNotAllowed
  1133  	}
  1134  
  1135  	w.written += int64(lenData) // ignoring errors, for errorKludge
  1136  	if w.contentLength != -1 && w.written > w.contentLength {
  1137  		return 0, ErrContentLength
  1138  	}
  1139  	if dataB != nil {
  1140  		return w.w.Write(dataB)
  1141  	} else {
  1142  		return w.w.WriteString(dataS)
  1143  	}
  1144  }
  1145  
  1146  func (w *response) finishRequest() {
  1147  	w.handlerDone = true
  1148  
  1149  	if !w.wroteHeader {
  1150  		w.WriteHeader(StatusOK)
  1151  	}
  1152  
  1153  	w.w.Flush()
  1154  	putBufioWriter(w.w)
  1155  	w.cw.close()
  1156  	w.conn.buf.Flush()
  1157  
  1158  	// Close the body (regardless of w.closeAfterReply) so we can
  1159  	// re-use its bufio.Reader later safely.
  1160  	w.req.Body.Close()
  1161  
  1162  	if w.req.MultipartForm != nil {
  1163  		w.req.MultipartForm.RemoveAll()
  1164  	}
  1165  }
  1166  
  1167  // shouldReuseConnection reports whether the underlying TCP connection can be reused.
  1168  // It must only be called after the handler is done executing.
  1169  func (w *response) shouldReuseConnection() bool {
  1170  	if w.closeAfterReply {
  1171  		// The request or something set while executing the
  1172  		// handler indicated we shouldn't reuse this
  1173  		// connection.
  1174  		return false
  1175  	}
  1176  
  1177  	if w.req.Method != "HEAD" && w.contentLength != -1 && w.bodyAllowed() && w.contentLength != w.written {
  1178  		// Did not write enough. Avoid getting out of sync.
  1179  		return false
  1180  	}
  1181  
  1182  	// There was some error writing to the underlying connection
  1183  	// during the request, so don't re-use this conn.
  1184  	if w.conn.werr != nil {
  1185  		return false
  1186  	}
  1187  
  1188  	if w.closedRequestBodyEarly() {
  1189  		return false
  1190  	}
  1191  
  1192  	return true
  1193  }
  1194  
  1195  func (w *response) closedRequestBodyEarly() bool {
  1196  	body, ok := w.req.Body.(*body)
  1197  	return ok && body.didEarlyClose()
  1198  }
  1199  
  1200  func (w *response) Flush() {
  1201  	if !w.wroteHeader {
  1202  		w.WriteHeader(StatusOK)
  1203  	}
  1204  	w.w.Flush()
  1205  	w.cw.flush()
  1206  }
  1207  
  1208  func (c *conn) finalFlush() {
  1209  	if c.buf != nil {
  1210  		c.buf.Flush()
  1211  
  1212  		// Steal the bufio.Reader (~4KB worth of memory) and its associated
  1213  		// reader for a future connection.
  1214  		putBufioReader(c.buf.Reader)
  1215  
  1216  		// Steal the bufio.Writer (~4KB worth of memory) and its associated
  1217  		// writer for a future connection.
  1218  		putBufioWriter(c.buf.Writer)
  1219  
  1220  		c.buf = nil
  1221  	}
  1222  }
  1223  
  1224  // Close the connection.
  1225  func (c *conn) close() {
  1226  	c.finalFlush()
  1227  	if c.rwc != nil {
  1228  		c.rwc.Close()
  1229  		c.rwc = nil
  1230  	}
  1231  }
  1232  
  1233  // rstAvoidanceDelay is the amount of time we sleep after closing the
  1234  // write side of a TCP connection before closing the entire socket.
  1235  // By sleeping, we increase the chances that the client sees our FIN
  1236  // and processes its final data before they process the subsequent RST
  1237  // from closing a connection with known unread data.
  1238  // This RST seems to occur mostly on BSD systems. (And Windows?)
  1239  // This timeout is somewhat arbitrary (~latency around the planet).
  1240  const rstAvoidanceDelay = 500 * time.Millisecond
  1241  
  1242  type closeWriter interface {
  1243  	CloseWrite() error
  1244  }
  1245  
  1246  var _ closeWriter = (*net.TCPConn)(nil)
  1247  
  1248  // closeWrite flushes any outstanding data and sends a FIN packet (if
  1249  // client is connected via TCP), signalling that we're done.  We then
  1250  // pause for a bit, hoping the client processes it before any
  1251  // subsequent RST.
  1252  //
  1253  // See https://golang.org/issue/3595
  1254  func (c *conn) closeWriteAndWait() {
  1255  	c.finalFlush()
  1256  	if tcp, ok := c.rwc.(closeWriter); ok {
  1257  		tcp.CloseWrite()
  1258  	}
  1259  	time.Sleep(rstAvoidanceDelay)
  1260  }
  1261  
  1262  // validNPN reports whether the proto is not a blacklisted Next
  1263  // Protocol Negotiation protocol.  Empty and built-in protocol types
  1264  // are blacklisted and can't be overridden with alternate
  1265  // implementations.
  1266  func validNPN(proto string) bool {
  1267  	switch proto {
  1268  	case "", "http/1.1", "http/1.0":
  1269  		return false
  1270  	}
  1271  	return true
  1272  }
  1273  
  1274  func (c *conn) setState(nc net.Conn, state ConnState) {
  1275  	if hook := c.server.ConnState; hook != nil {
  1276  		hook(nc, state)
  1277  	}
  1278  }
  1279  
  1280  // Serve a new connection.
  1281  func (c *conn) serve() {
  1282  	origConn := c.rwc // copy it before it's set nil on Close or Hijack
  1283  	defer func() {
  1284  		if err := recover(); err != nil {
  1285  			const size = 64 << 10
  1286  			buf := make([]byte, size)
  1287  			buf = buf[:runtime.Stack(buf, false)]
  1288  			c.server.logf("http: panic serving %v: %v\n%s", c.remoteAddr, err, buf)
  1289  		}
  1290  		if !c.hijacked() {
  1291  			c.close()
  1292  			c.setState(origConn, StateClosed)
  1293  		}
  1294  	}()
  1295  
  1296  	if tlsConn, ok := c.rwc.(*tls.Conn); ok {
  1297  		if d := c.server.ReadTimeout; d != 0 {
  1298  			c.rwc.SetReadDeadline(time.Now().Add(d))
  1299  		}
  1300  		if d := c.server.WriteTimeout; d != 0 {
  1301  			c.rwc.SetWriteDeadline(time.Now().Add(d))
  1302  		}
  1303  		if err := tlsConn.Handshake(); err != nil {
  1304  			c.server.logf("http: TLS handshake error from %s: %v", c.rwc.RemoteAddr(), err)
  1305  			return
  1306  		}
  1307  		c.tlsState = new(tls.ConnectionState)
  1308  		*c.tlsState = tlsConn.ConnectionState()
  1309  		if proto := c.tlsState.NegotiatedProtocol; validNPN(proto) {
  1310  			if fn := c.server.TLSNextProto[proto]; fn != nil {
  1311  				h := initNPNRequest{tlsConn, serverHandler{c.server}}
  1312  				fn(c.server, tlsConn, h)
  1313  			}
  1314  			return
  1315  		}
  1316  	}
  1317  
  1318  	for {
  1319  		w, err := c.readRequest()
  1320  		if c.lr.N != c.server.initialLimitedReaderSize() {
  1321  			// If we read any bytes off the wire, we're active.
  1322  			c.setState(c.rwc, StateActive)
  1323  		}
  1324  		if err != nil {
  1325  			if err == errTooLarge {
  1326  				// Their HTTP client may or may not be
  1327  				// able to read this if we're
  1328  				// responding to them and hanging up
  1329  				// while they're still writing their
  1330  				// request.  Undefined behavior.
  1331  				io.WriteString(c.rwc, "HTTP/1.1 413 Request Entity Too Large\r\n\r\n")
  1332  				c.closeWriteAndWait()
  1333  				break
  1334  			} else if err == io.EOF {
  1335  				break // Don't reply
  1336  			} else if neterr, ok := err.(net.Error); ok && neterr.Timeout() {
  1337  				break // Don't reply
  1338  			}
  1339  			io.WriteString(c.rwc, "HTTP/1.1 400 Bad Request\r\n\r\n")
  1340  			break
  1341  		}
  1342  
  1343  		// Expect 100 Continue support
  1344  		req := w.req
  1345  		if req.expectsContinue() {
  1346  			if req.ProtoAtLeast(1, 1) && req.ContentLength != 0 {
  1347  				// Wrap the Body reader with one that replies on the connection
  1348  				req.Body = &expectContinueReader{readCloser: req.Body, resp: w}
  1349  			}
  1350  			req.Header.Del("Expect")
  1351  		} else if req.Header.get("Expect") != "" {
  1352  			w.sendExpectationFailed()
  1353  			break
  1354  		}
  1355  
  1356  		// HTTP cannot have multiple simultaneous active requests.[*]
  1357  		// Until the server replies to this request, it can't read another,
  1358  		// so we might as well run the handler in this goroutine.
  1359  		// [*] Not strictly true: HTTP pipelining.  We could let them all process
  1360  		// in parallel even if their responses need to be serialized.
  1361  		serverHandler{c.server}.ServeHTTP(w, w.req)
  1362  		if c.hijacked() {
  1363  			return
  1364  		}
  1365  		w.finishRequest()
  1366  		if !w.shouldReuseConnection() {
  1367  			if w.requestBodyLimitHit || w.closedRequestBodyEarly() {
  1368  				c.closeWriteAndWait()
  1369  			}
  1370  			break
  1371  		}
  1372  		c.setState(c.rwc, StateIdle)
  1373  	}
  1374  }
  1375  
  1376  func (w *response) sendExpectationFailed() {
  1377  	// TODO(bradfitz): let ServeHTTP handlers handle
  1378  	// requests with non-standard expectation[s]? Seems
  1379  	// theoretical at best, and doesn't fit into the
  1380  	// current ServeHTTP model anyway.  We'd need to
  1381  	// make the ResponseWriter an optional
  1382  	// "ExpectReplier" interface or something.
  1383  	//
  1384  	// For now we'll just obey RFC 2616 14.20 which says
  1385  	// "If a server receives a request containing an
  1386  	// Expect field that includes an expectation-
  1387  	// extension that it does not support, it MUST
  1388  	// respond with a 417 (Expectation Failed) status."
  1389  	w.Header().Set("Connection", "close")
  1390  	w.WriteHeader(StatusExpectationFailed)
  1391  	w.finishRequest()
  1392  }
  1393  
  1394  // Hijack implements the Hijacker.Hijack method. Our response is both a ResponseWriter
  1395  // and a Hijacker.
  1396  func (w *response) Hijack() (rwc net.Conn, buf *bufio.ReadWriter, err error) {
  1397  	if w.wroteHeader {
  1398  		w.cw.flush()
  1399  	}
  1400  	// Release the bufioWriter that writes to the chunk writer, it is not
  1401  	// used after a connection has been hijacked.
  1402  	rwc, buf, err = w.conn.hijack()
  1403  	if err == nil {
  1404  		putBufioWriter(w.w)
  1405  		w.w = nil
  1406  	}
  1407  	return rwc, buf, err
  1408  }
  1409  
  1410  func (w *response) CloseNotify() <-chan bool {
  1411  	return w.conn.closeNotify()
  1412  }
  1413  
  1414  // The HandlerFunc type is an adapter to allow the use of
  1415  // ordinary functions as HTTP handlers.  If f is a function
  1416  // with the appropriate signature, HandlerFunc(f) is a
  1417  // Handler object that calls f.
  1418  type HandlerFunc func(ResponseWriter, *Request)
  1419  
  1420  // ServeHTTP calls f(w, r).
  1421  func (f HandlerFunc) ServeHTTP(w ResponseWriter, r *Request) {
  1422  	f(w, r)
  1423  }
  1424  
  1425  // Helper handlers
  1426  
  1427  // Error replies to the request with the specified error message and HTTP code.
  1428  // The error message should be plain text.
  1429  func Error(w ResponseWriter, error string, code int) {
  1430  	w.Header().Set("Content-Type", "text/plain; charset=utf-8")
  1431  	w.Header().Set("X-Content-Type-Options", "nosniff")
  1432  	w.WriteHeader(code)
  1433  	fmt.Fprintln(w, error)
  1434  }
  1435  
  1436  // NotFound replies to the request with an HTTP 404 not found error.
  1437  func NotFound(w ResponseWriter, r *Request) { Error(w, "404 page not found", StatusNotFound) }
  1438  
  1439  // NotFoundHandler returns a simple request handler
  1440  // that replies to each request with a ``404 page not found'' reply.
  1441  func NotFoundHandler() Handler { return HandlerFunc(NotFound) }
  1442  
  1443  // StripPrefix returns a handler that serves HTTP requests
  1444  // by removing the given prefix from the request URL's Path
  1445  // and invoking the handler h. StripPrefix handles a
  1446  // request for a path that doesn't begin with prefix by
  1447  // replying with an HTTP 404 not found error.
  1448  func StripPrefix(prefix string, h Handler) Handler {
  1449  	if prefix == "" {
  1450  		return h
  1451  	}
  1452  	return HandlerFunc(func(w ResponseWriter, r *Request) {
  1453  		if p := strings.TrimPrefix(r.URL.Path, prefix); len(p) < len(r.URL.Path) {
  1454  			r.URL.Path = p
  1455  			h.ServeHTTP(w, r)
  1456  		} else {
  1457  			NotFound(w, r)
  1458  		}
  1459  	})
  1460  }
  1461  
  1462  // Redirect replies to the request with a redirect to url,
  1463  // which may be a path relative to the request path.
  1464  func Redirect(w ResponseWriter, r *Request, urlStr string, code int) {
  1465  	if u, err := url.Parse(urlStr); err == nil {
  1466  		// If url was relative, make absolute by
  1467  		// combining with request path.
  1468  		// The browser would probably do this for us,
  1469  		// but doing it ourselves is more reliable.
  1470  
  1471  		// NOTE(rsc): RFC 2616 says that the Location
  1472  		// line must be an absolute URI, like
  1473  		// "http://www.google.com/redirect/",
  1474  		// not a path like "/redirect/".
  1475  		// Unfortunately, we don't know what to
  1476  		// put in the host name section to get the
  1477  		// client to connect to us again, so we can't
  1478  		// know the right absolute URI to send back.
  1479  		// Because of this problem, no one pays attention
  1480  		// to the RFC; they all send back just a new path.
  1481  		// So do we.
  1482  		oldpath := r.URL.Path
  1483  		if oldpath == "" { // should not happen, but avoid a crash if it does
  1484  			oldpath = "/"
  1485  		}
  1486  		if u.Scheme == "" {
  1487  			// no leading http://server
  1488  			if urlStr == "" || urlStr[0] != '/' {
  1489  				// make relative path absolute
  1490  				olddir, _ := path.Split(oldpath)
  1491  				urlStr = olddir + urlStr
  1492  			}
  1493  
  1494  			var query string
  1495  			if i := strings.Index(urlStr, "?"); i != -1 {
  1496  				urlStr, query = urlStr[:i], urlStr[i:]
  1497  			}
  1498  
  1499  			// clean up but preserve trailing slash
  1500  			trailing := strings.HasSuffix(urlStr, "/")
  1501  			urlStr = path.Clean(urlStr)
  1502  			if trailing && !strings.HasSuffix(urlStr, "/") {
  1503  				urlStr += "/"
  1504  			}
  1505  			urlStr += query
  1506  		}
  1507  	}
  1508  
  1509  	w.Header().Set("Location", urlStr)
  1510  	w.WriteHeader(code)
  1511  
  1512  	// RFC2616 recommends that a short note "SHOULD" be included in the
  1513  	// response because older user agents may not understand 301/307.
  1514  	// Shouldn't send the response for POST or HEAD; that leaves GET.
  1515  	if r.Method == "GET" {
  1516  		note := "<a href=\"" + htmlEscape(urlStr) + "\">" + statusText[code] + "</a>.\n"
  1517  		fmt.Fprintln(w, note)
  1518  	}
  1519  }
  1520  
  1521  var htmlReplacer = strings.NewReplacer(
  1522  	"&", "&amp;",
  1523  	"<", "&lt;",
  1524  	">", "&gt;",
  1525  	// "&#34;" is shorter than "&quot;".
  1526  	`"`, "&#34;",
  1527  	// "&#39;" is shorter than "&apos;" and apos was not in HTML until HTML5.
  1528  	"'", "&#39;",
  1529  )
  1530  
  1531  func htmlEscape(s string) string {
  1532  	return htmlReplacer.Replace(s)
  1533  }
  1534  
  1535  // Redirect to a fixed URL
  1536  type redirectHandler struct {
  1537  	url  string
  1538  	code int
  1539  }
  1540  
  1541  func (rh *redirectHandler) ServeHTTP(w ResponseWriter, r *Request) {
  1542  	Redirect(w, r, rh.url, rh.code)
  1543  }
  1544  
  1545  // RedirectHandler returns a request handler that redirects
  1546  // each request it receives to the given url using the given
  1547  // status code.
  1548  func RedirectHandler(url string, code int) Handler {
  1549  	return &redirectHandler{url, code}
  1550  }
  1551  
  1552  // ServeMux is an HTTP request multiplexer.
  1553  // It matches the URL of each incoming request against a list of registered
  1554  // patterns and calls the handler for the pattern that
  1555  // most closely matches the URL.
  1556  //
  1557  // Patterns name fixed, rooted paths, like "/favicon.ico",
  1558  // or rooted subtrees, like "/images/" (note the trailing slash).
  1559  // Longer patterns take precedence over shorter ones, so that
  1560  // if there are handlers registered for both "/images/"
  1561  // and "/images/thumbnails/", the latter handler will be
  1562  // called for paths beginning "/images/thumbnails/" and the
  1563  // former will receive requests for any other paths in the
  1564  // "/images/" subtree.
  1565  //
  1566  // Note that since a pattern ending in a slash names a rooted subtree,
  1567  // the pattern "/" matches all paths not matched by other registered
  1568  // patterns, not just the URL with Path == "/".
  1569  //
  1570  // Patterns may optionally begin with a host name, restricting matches to
  1571  // URLs on that host only.  Host-specific patterns take precedence over
  1572  // general patterns, so that a handler might register for the two patterns
  1573  // "/codesearch" and "codesearch.google.com/" without also taking over
  1574  // requests for "http://www.google.com/".
  1575  //
  1576  // ServeMux also takes care of sanitizing the URL request path,
  1577  // redirecting any request containing . or .. elements to an
  1578  // equivalent .- and ..-free URL.
  1579  type ServeMux struct {
  1580  	mu    sync.RWMutex
  1581  	m     map[string]muxEntry
  1582  	hosts bool // whether any patterns contain hostnames
  1583  }
  1584  
  1585  type muxEntry struct {
  1586  	explicit bool
  1587  	h        Handler
  1588  	pattern  string
  1589  }
  1590  
  1591  // NewServeMux allocates and returns a new ServeMux.
  1592  func NewServeMux() *ServeMux { return &ServeMux{m: make(map[string]muxEntry)} }
  1593  
  1594  // DefaultServeMux is the default ServeMux used by Serve.
  1595  var DefaultServeMux = NewServeMux()
  1596  
  1597  // Does path match pattern?
  1598  func pathMatch(pattern, path string) bool {
  1599  	if len(pattern) == 0 {
  1600  		// should not happen
  1601  		return false
  1602  	}
  1603  	n := len(pattern)
  1604  	if pattern[n-1] != '/' {
  1605  		return pattern == path
  1606  	}
  1607  	return len(path) >= n && path[0:n] == pattern
  1608  }
  1609  
  1610  // Return the canonical path for p, eliminating . and .. elements.
  1611  func cleanPath(p string) string {
  1612  	if p == "" {
  1613  		return "/"
  1614  	}
  1615  	if p[0] != '/' {
  1616  		p = "/" + p
  1617  	}
  1618  	np := path.Clean(p)
  1619  	// path.Clean removes trailing slash except for root;
  1620  	// put the trailing slash back if necessary.
  1621  	if p[len(p)-1] == '/' && np != "/" {
  1622  		np += "/"
  1623  	}
  1624  	return np
  1625  }
  1626  
  1627  // Find a handler on a handler map given a path string
  1628  // Most-specific (longest) pattern wins
  1629  func (mux *ServeMux) match(path string) (h Handler, pattern string) {
  1630  	var n = 0
  1631  	for k, v := range mux.m {
  1632  		if !pathMatch(k, path) {
  1633  			continue
  1634  		}
  1635  		if h == nil || len(k) > n {
  1636  			n = len(k)
  1637  			h = v.h
  1638  			pattern = v.pattern
  1639  		}
  1640  	}
  1641  	return
  1642  }
  1643  
  1644  // Handler returns the handler to use for the given request,
  1645  // consulting r.Method, r.Host, and r.URL.Path. It always returns
  1646  // a non-nil handler. If the path is not in its canonical form, the
  1647  // handler will be an internally-generated handler that redirects
  1648  // to the canonical path.
  1649  //
  1650  // Handler also returns the registered pattern that matches the
  1651  // request or, in the case of internally-generated redirects,
  1652  // the pattern that will match after following the redirect.
  1653  //
  1654  // If there is no registered handler that applies to the request,
  1655  // Handler returns a ``page not found'' handler and an empty pattern.
  1656  func (mux *ServeMux) Handler(r *Request) (h Handler, pattern string) {
  1657  	if r.Method != "CONNECT" {
  1658  		if p := cleanPath(r.URL.Path); p != r.URL.Path {
  1659  			_, pattern = mux.handler(r.Host, p)
  1660  			url := *r.URL
  1661  			url.Path = p
  1662  			return RedirectHandler(url.String(), StatusMovedPermanently), pattern
  1663  		}
  1664  	}
  1665  
  1666  	return mux.handler(r.Host, r.URL.Path)
  1667  }
  1668  
  1669  // handler is the main implementation of Handler.
  1670  // The path is known to be in canonical form, except for CONNECT methods.
  1671  func (mux *ServeMux) handler(host, path string) (h Handler, pattern string) {
  1672  	mux.mu.RLock()
  1673  	defer mux.mu.RUnlock()
  1674  
  1675  	// Host-specific pattern takes precedence over generic ones
  1676  	if mux.hosts {
  1677  		h, pattern = mux.match(host + path)
  1678  	}
  1679  	if h == nil {
  1680  		h, pattern = mux.match(path)
  1681  	}
  1682  	if h == nil {
  1683  		h, pattern = NotFoundHandler(), ""
  1684  	}
  1685  	return
  1686  }
  1687  
  1688  // ServeHTTP dispatches the request to the handler whose
  1689  // pattern most closely matches the request URL.
  1690  func (mux *ServeMux) ServeHTTP(w ResponseWriter, r *Request) {
  1691  	if r.RequestURI == "*" {
  1692  		if r.ProtoAtLeast(1, 1) {
  1693  			w.Header().Set("Connection", "close")
  1694  		}
  1695  		w.WriteHeader(StatusBadRequest)
  1696  		return
  1697  	}
  1698  	h, _ := mux.Handler(r)
  1699  	h.ServeHTTP(w, r)
  1700  }
  1701  
  1702  // Handle registers the handler for the given pattern.
  1703  // If a handler already exists for pattern, Handle panics.
  1704  func (mux *ServeMux) Handle(pattern string, handler Handler) {
  1705  	mux.mu.Lock()
  1706  	defer mux.mu.Unlock()
  1707  
  1708  	if pattern == "" {
  1709  		panic("http: invalid pattern " + pattern)
  1710  	}
  1711  	if handler == nil {
  1712  		panic("http: nil handler")
  1713  	}
  1714  	if mux.m[pattern].explicit {
  1715  		panic("http: multiple registrations for " + pattern)
  1716  	}
  1717  
  1718  	mux.m[pattern] = muxEntry{explicit: true, h: handler, pattern: pattern}
  1719  
  1720  	if pattern[0] != '/' {
  1721  		mux.hosts = true
  1722  	}
  1723  
  1724  	// Helpful behavior:
  1725  	// If pattern is /tree/, insert an implicit permanent redirect for /tree.
  1726  	// It can be overridden by an explicit registration.
  1727  	n := len(pattern)
  1728  	if n > 0 && pattern[n-1] == '/' && !mux.m[pattern[0:n-1]].explicit {
  1729  		// If pattern contains a host name, strip it and use remaining
  1730  		// path for redirect.
  1731  		path := pattern
  1732  		if pattern[0] != '/' {
  1733  			// In pattern, at least the last character is a '/', so
  1734  			// strings.Index can't be -1.
  1735  			path = pattern[strings.Index(pattern, "/"):]
  1736  		}
  1737  		url := &url.URL{Path: path}
  1738  		mux.m[pattern[0:n-1]] = muxEntry{h: RedirectHandler(url.String(), StatusMovedPermanently), pattern: pattern}
  1739  	}
  1740  }
  1741  
  1742  // HandleFunc registers the handler function for the given pattern.
  1743  func (mux *ServeMux) HandleFunc(pattern string, handler func(ResponseWriter, *Request)) {
  1744  	mux.Handle(pattern, HandlerFunc(handler))
  1745  }
  1746  
  1747  // Handle registers the handler for the given pattern
  1748  // in the DefaultServeMux.
  1749  // The documentation for ServeMux explains how patterns are matched.
  1750  func Handle(pattern string, handler Handler) { DefaultServeMux.Handle(pattern, handler) }
  1751  
  1752  // HandleFunc registers the handler function for the given pattern
  1753  // in the DefaultServeMux.
  1754  // The documentation for ServeMux explains how patterns are matched.
  1755  func HandleFunc(pattern string, handler func(ResponseWriter, *Request)) {
  1756  	DefaultServeMux.HandleFunc(pattern, handler)
  1757  }
  1758  
  1759  // Serve accepts incoming HTTP connections on the listener l,
  1760  // creating a new service goroutine for each.  The service goroutines
  1761  // read requests and then call handler to reply to them.
  1762  // Handler is typically nil, in which case the DefaultServeMux is used.
  1763  func Serve(l net.Listener, handler Handler) error {
  1764  	srv := &Server{Handler: handler}
  1765  	return srv.Serve(l)
  1766  }
  1767  
  1768  // A Server defines parameters for running an HTTP server.
  1769  // The zero value for Server is a valid configuration.
  1770  type Server struct {
  1771  	Addr           string        // TCP address to listen on, ":http" if empty
  1772  	Handler        Handler       // handler to invoke, http.DefaultServeMux if nil
  1773  	ReadTimeout    time.Duration // maximum duration before timing out read of the request
  1774  	WriteTimeout   time.Duration // maximum duration before timing out write of the response
  1775  	MaxHeaderBytes int           // maximum size of request headers, DefaultMaxHeaderBytes if 0
  1776  	TLSConfig      *tls.Config   // optional TLS config, used by ListenAndServeTLS
  1777  
  1778  	// TLSNextProto optionally specifies a function to take over
  1779  	// ownership of the provided TLS connection when an NPN
  1780  	// protocol upgrade has occurred.  The map key is the protocol
  1781  	// name negotiated. The Handler argument should be used to
  1782  	// handle HTTP requests and will initialize the Request's TLS
  1783  	// and RemoteAddr if not already set.  The connection is
  1784  	// automatically closed when the function returns.
  1785  	TLSNextProto map[string]func(*Server, *tls.Conn, Handler)
  1786  
  1787  	// ConnState specifies an optional callback function that is
  1788  	// called when a client connection changes state. See the
  1789  	// ConnState type and associated constants for details.
  1790  	ConnState func(net.Conn, ConnState)
  1791  
  1792  	// ErrorLog specifies an optional logger for errors accepting
  1793  	// connections and unexpected behavior from handlers.
  1794  	// If nil, logging goes to os.Stderr via the log package's
  1795  	// standard logger.
  1796  	ErrorLog *log.Logger
  1797  
  1798  	disableKeepAlives int32 // accessed atomically.
  1799  }
  1800  
  1801  // A ConnState represents the state of a client connection to a server.
  1802  // It's used by the optional Server.ConnState hook.
  1803  type ConnState int
  1804  
  1805  const (
  1806  	// StateNew represents a new connection that is expected to
  1807  	// send a request immediately. Connections begin at this
  1808  	// state and then transition to either StateActive or
  1809  	// StateClosed.
  1810  	StateNew ConnState = iota
  1811  
  1812  	// StateActive represents a connection that has read 1 or more
  1813  	// bytes of a request. The Server.ConnState hook for
  1814  	// StateActive fires before the request has entered a handler
  1815  	// and doesn't fire again until the request has been
  1816  	// handled. After the request is handled, the state
  1817  	// transitions to StateClosed, StateHijacked, or StateIdle.
  1818  	StateActive
  1819  
  1820  	// StateIdle represents a connection that has finished
  1821  	// handling a request and is in the keep-alive state, waiting
  1822  	// for a new request. Connections transition from StateIdle
  1823  	// to either StateActive or StateClosed.
  1824  	StateIdle
  1825  
  1826  	// StateHijacked represents a hijacked connection.
  1827  	// This is a terminal state. It does not transition to StateClosed.
  1828  	StateHijacked
  1829  
  1830  	// StateClosed represents a closed connection.
  1831  	// This is a terminal state. Hijacked connections do not
  1832  	// transition to StateClosed.
  1833  	StateClosed
  1834  )
  1835  
  1836  var stateName = map[ConnState]string{
  1837  	StateNew:      "new",
  1838  	StateActive:   "active",
  1839  	StateIdle:     "idle",
  1840  	StateHijacked: "hijacked",
  1841  	StateClosed:   "closed",
  1842  }
  1843  
  1844  func (c ConnState) String() string {
  1845  	return stateName[c]
  1846  }
  1847  
  1848  // serverHandler delegates to either the server's Handler or
  1849  // DefaultServeMux and also handles "OPTIONS *" requests.
  1850  type serverHandler struct {
  1851  	srv *Server
  1852  }
  1853  
  1854  func (sh serverHandler) ServeHTTP(rw ResponseWriter, req *Request) {
  1855  	handler := sh.srv.Handler
  1856  	if handler == nil {
  1857  		handler = DefaultServeMux
  1858  	}
  1859  	if req.RequestURI == "*" && req.Method == "OPTIONS" {
  1860  		handler = globalOptionsHandler{}
  1861  	}
  1862  	handler.ServeHTTP(rw, req)
  1863  }
  1864  
  1865  // ListenAndServe listens on the TCP network address srv.Addr and then
  1866  // calls Serve to handle requests on incoming connections.  If
  1867  // srv.Addr is blank, ":http" is used.
  1868  func (srv *Server) ListenAndServe() error {
  1869  	addr := srv.Addr
  1870  	if addr == "" {
  1871  		addr = ":http"
  1872  	}
  1873  	ln, err := net.Listen("tcp", addr)
  1874  	if err != nil {
  1875  		return err
  1876  	}
  1877  	return srv.Serve(tcpKeepAliveListener{ln.(*net.TCPListener)})
  1878  }
  1879  
  1880  // Serve accepts incoming connections on the Listener l, creating a
  1881  // new service goroutine for each.  The service goroutines read requests and
  1882  // then call srv.Handler to reply to them.
  1883  func (srv *Server) Serve(l net.Listener) error {
  1884  	defer l.Close()
  1885  	var tempDelay time.Duration // how long to sleep on accept failure
  1886  	for {
  1887  		rw, e := l.Accept()
  1888  		if e != nil {
  1889  			if ne, ok := e.(net.Error); ok && ne.Temporary() {
  1890  				if tempDelay == 0 {
  1891  					tempDelay = 5 * time.Millisecond
  1892  				} else {
  1893  					tempDelay *= 2
  1894  				}
  1895  				if max := 1 * time.Second; tempDelay > max {
  1896  					tempDelay = max
  1897  				}
  1898  				srv.logf("http: Accept error: %v; retrying in %v", e, tempDelay)
  1899  				time.Sleep(tempDelay)
  1900  				continue
  1901  			}
  1902  			return e
  1903  		}
  1904  		tempDelay = 0
  1905  		c, err := srv.newConn(rw)
  1906  		if err != nil {
  1907  			continue
  1908  		}
  1909  		c.setState(c.rwc, StateNew) // before Serve can return
  1910  		go c.serve()
  1911  	}
  1912  }
  1913  
  1914  func (s *Server) doKeepAlives() bool {
  1915  	return atomic.LoadInt32(&s.disableKeepAlives) == 0
  1916  }
  1917  
  1918  // SetKeepAlivesEnabled controls whether HTTP keep-alives are enabled.
  1919  // By default, keep-alives are always enabled. Only very
  1920  // resource-constrained environments or servers in the process of
  1921  // shutting down should disable them.
  1922  func (srv *Server) SetKeepAlivesEnabled(v bool) {
  1923  	if v {
  1924  		atomic.StoreInt32(&srv.disableKeepAlives, 0)
  1925  	} else {
  1926  		atomic.StoreInt32(&srv.disableKeepAlives, 1)
  1927  	}
  1928  }
  1929  
  1930  func (s *Server) logf(format string, args ...interface{}) {
  1931  	if s.ErrorLog != nil {
  1932  		s.ErrorLog.Printf(format, args...)
  1933  	} else {
  1934  		log.Printf(format, args...)
  1935  	}
  1936  }
  1937  
  1938  // ListenAndServe listens on the TCP network address addr
  1939  // and then calls Serve with handler to handle requests
  1940  // on incoming connections.  Handler is typically nil,
  1941  // in which case the DefaultServeMux is used.
  1942  //
  1943  // A trivial example server is:
  1944  //
  1945  //	package main
  1946  //
  1947  //	import (
  1948  //		"io"
  1949  //		"net/http"
  1950  //		"log"
  1951  //	)
  1952  //
  1953  //	// hello world, the web server
  1954  //	func HelloServer(w http.ResponseWriter, req *http.Request) {
  1955  //		io.WriteString(w, "hello, world!\n")
  1956  //	}
  1957  //
  1958  //	func main() {
  1959  //		http.HandleFunc("/hello", HelloServer)
  1960  //		err := http.ListenAndServe(":12345", nil)
  1961  //		if err != nil {
  1962  //			log.Fatal("ListenAndServe: ", err)
  1963  //		}
  1964  //	}
  1965  func ListenAndServe(addr string, handler Handler) error {
  1966  	server := &Server{Addr: addr, Handler: handler}
  1967  	return server.ListenAndServe()
  1968  }
  1969  
  1970  // ListenAndServeTLS acts identically to ListenAndServe, except that it
  1971  // expects HTTPS connections. Additionally, files containing a certificate and
  1972  // matching private key for the server must be provided. If the certificate
  1973  // is signed by a certificate authority, the certFile should be the concatenation
  1974  // of the server's certificate, any intermediates, and the CA's certificate.
  1975  //
  1976  // A trivial example server is:
  1977  //
  1978  //	import (
  1979  //		"log"
  1980  //		"net/http"
  1981  //	)
  1982  //
  1983  //	func handler(w http.ResponseWriter, req *http.Request) {
  1984  //		w.Header().Set("Content-Type", "text/plain")
  1985  //		w.Write([]byte("This is an example server.\n"))
  1986  //	}
  1987  //
  1988  //	func main() {
  1989  //		http.HandleFunc("/", handler)
  1990  //		log.Printf("About to listen on 10443. Go to https://127.0.0.1:10443/")
  1991  //		err := http.ListenAndServeTLS(":10443", "cert.pem", "key.pem", nil)
  1992  //		if err != nil {
  1993  //			log.Fatal(err)
  1994  //		}
  1995  //	}
  1996  //
  1997  // One can use generate_cert.go in crypto/tls to generate cert.pem and key.pem.
  1998  func ListenAndServeTLS(addr string, certFile string, keyFile string, handler Handler) error {
  1999  	server := &Server{Addr: addr, Handler: handler}
  2000  	return server.ListenAndServeTLS(certFile, keyFile)
  2001  }
  2002  
  2003  // ListenAndServeTLS listens on the TCP network address srv.Addr and
  2004  // then calls Serve to handle requests on incoming TLS connections.
  2005  //
  2006  // Filenames containing a certificate and matching private key for the
  2007  // server must be provided if the Server's TLSConfig.Certificates is
  2008  // not populated. If the certificate is signed by a certificate
  2009  // authority, the certFile should be the concatenation of the server's
  2010  // certificate, any intermediates, and the CA's certificate.
  2011  //
  2012  // If srv.Addr is blank, ":https" is used.
  2013  func (srv *Server) ListenAndServeTLS(certFile, keyFile string) error {
  2014  	addr := srv.Addr
  2015  	if addr == "" {
  2016  		addr = ":https"
  2017  	}
  2018  	config := cloneTLSConfig(srv.TLSConfig)
  2019  	if config.NextProtos == nil {
  2020  		config.NextProtos = []string{"http/1.1"}
  2021  	}
  2022  
  2023  	if len(config.Certificates) == 0 || certFile != "" || keyFile != "" {
  2024  		var err error
  2025  		config.Certificates = make([]tls.Certificate, 1)
  2026  		config.Certificates[0], err = tls.LoadX509KeyPair(certFile, keyFile)
  2027  		if err != nil {
  2028  			return err
  2029  		}
  2030  	}
  2031  
  2032  	ln, err := net.Listen("tcp", addr)
  2033  	if err != nil {
  2034  		return err
  2035  	}
  2036  
  2037  	tlsListener := tls.NewListener(tcpKeepAliveListener{ln.(*net.TCPListener)}, config)
  2038  	return srv.Serve(tlsListener)
  2039  }
  2040  
  2041  // TimeoutHandler returns a Handler that runs h with the given time limit.
  2042  //
  2043  // The new Handler calls h.ServeHTTP to handle each request, but if a
  2044  // call runs for longer than its time limit, the handler responds with
  2045  // a 503 Service Unavailable error and the given message in its body.
  2046  // (If msg is empty, a suitable default message will be sent.)
  2047  // After such a timeout, writes by h to its ResponseWriter will return
  2048  // ErrHandlerTimeout.
  2049  func TimeoutHandler(h Handler, dt time.Duration, msg string) Handler {
  2050  	f := func() <-chan time.Time {
  2051  		return time.After(dt)
  2052  	}
  2053  	return &timeoutHandler{h, f, msg}
  2054  }
  2055  
  2056  // ErrHandlerTimeout is returned on ResponseWriter Write calls
  2057  // in handlers which have timed out.
  2058  var ErrHandlerTimeout = errors.New("http: Handler timeout")
  2059  
  2060  type timeoutHandler struct {
  2061  	handler Handler
  2062  	timeout func() <-chan time.Time // returns channel producing a timeout
  2063  	body    string
  2064  }
  2065  
  2066  func (h *timeoutHandler) errorBody() string {
  2067  	if h.body != "" {
  2068  		return h.body
  2069  	}
  2070  	return "<html><head><title>Timeout</title></head><body><h1>Timeout</h1></body></html>"
  2071  }
  2072  
  2073  func (h *timeoutHandler) ServeHTTP(w ResponseWriter, r *Request) {
  2074  	done := make(chan bool, 1)
  2075  	tw := &timeoutWriter{w: w}
  2076  	go func() {
  2077  		h.handler.ServeHTTP(tw, r)
  2078  		done <- true
  2079  	}()
  2080  	select {
  2081  	case <-done:
  2082  		return
  2083  	case <-h.timeout():
  2084  		tw.mu.Lock()
  2085  		defer tw.mu.Unlock()
  2086  		if !tw.wroteHeader {
  2087  			tw.w.WriteHeader(StatusServiceUnavailable)
  2088  			tw.w.Write([]byte(h.errorBody()))
  2089  		}
  2090  		tw.timedOut = true
  2091  	}
  2092  }
  2093  
  2094  type timeoutWriter struct {
  2095  	w ResponseWriter
  2096  
  2097  	mu          sync.Mutex
  2098  	timedOut    bool
  2099  	wroteHeader bool
  2100  }
  2101  
  2102  func (tw *timeoutWriter) Header() Header {
  2103  	return tw.w.Header()
  2104  }
  2105  
  2106  func (tw *timeoutWriter) Write(p []byte) (int, error) {
  2107  	tw.mu.Lock()
  2108  	defer tw.mu.Unlock()
  2109  	tw.wroteHeader = true // implicitly at least
  2110  	if tw.timedOut {
  2111  		return 0, ErrHandlerTimeout
  2112  	}
  2113  	return tw.w.Write(p)
  2114  }
  2115  
  2116  func (tw *timeoutWriter) WriteHeader(code int) {
  2117  	tw.mu.Lock()
  2118  	defer tw.mu.Unlock()
  2119  	if tw.timedOut || tw.wroteHeader {
  2120  		return
  2121  	}
  2122  	tw.wroteHeader = true
  2123  	tw.w.WriteHeader(code)
  2124  }
  2125  
  2126  // tcpKeepAliveListener sets TCP keep-alive timeouts on accepted
  2127  // connections. It's used by ListenAndServe and ListenAndServeTLS so
  2128  // dead TCP connections (e.g. closing laptop mid-download) eventually
  2129  // go away.
  2130  type tcpKeepAliveListener struct {
  2131  	*net.TCPListener
  2132  }
  2133  
  2134  func (ln tcpKeepAliveListener) Accept() (c net.Conn, err error) {
  2135  	tc, err := ln.AcceptTCP()
  2136  	if err != nil {
  2137  		return
  2138  	}
  2139  	tc.SetKeepAlive(true)
  2140  	tc.SetKeepAlivePeriod(3 * time.Minute)
  2141  	return tc, nil
  2142  }
  2143  
  2144  // globalOptionsHandler responds to "OPTIONS *" requests.
  2145  type globalOptionsHandler struct{}
  2146  
  2147  func (globalOptionsHandler) ServeHTTP(w ResponseWriter, r *Request) {
  2148  	w.Header().Set("Content-Length", "0")
  2149  	if r.ContentLength != 0 {
  2150  		// Read up to 4KB of OPTIONS body (as mentioned in the
  2151  		// spec as being reserved for future use), but anything
  2152  		// over that is considered a waste of server resources
  2153  		// (or an attack) and we abort and close the connection,
  2154  		// courtesy of MaxBytesReader's EOF behavior.
  2155  		mb := MaxBytesReader(w, r.Body, 4<<10)
  2156  		io.Copy(ioutil.Discard, mb)
  2157  	}
  2158  }
  2159  
  2160  type eofReaderWithWriteTo struct{}
  2161  
  2162  func (eofReaderWithWriteTo) WriteTo(io.Writer) (int64, error) { return 0, nil }
  2163  func (eofReaderWithWriteTo) Read([]byte) (int, error)         { return 0, io.EOF }
  2164  
  2165  // eofReader is a non-nil io.ReadCloser that always returns EOF.
  2166  // It has a WriteTo method so io.Copy won't need a buffer.
  2167  var eofReader = &struct {
  2168  	eofReaderWithWriteTo
  2169  	io.Closer
  2170  }{
  2171  	eofReaderWithWriteTo{},
  2172  	ioutil.NopCloser(nil),
  2173  }
  2174  
  2175  // Verify that an io.Copy from an eofReader won't require a buffer.
  2176  var _ io.WriterTo = eofReader
  2177  
  2178  // initNPNRequest is an HTTP handler that initializes certain
  2179  // uninitialized fields in its *Request. Such partially-initialized
  2180  // Requests come from NPN protocol handlers.
  2181  type initNPNRequest struct {
  2182  	c *tls.Conn
  2183  	h serverHandler
  2184  }
  2185  
  2186  func (h initNPNRequest) ServeHTTP(rw ResponseWriter, req *Request) {
  2187  	if req.TLS == nil {
  2188  		req.TLS = &tls.ConnectionState{}
  2189  		*req.TLS = h.c.ConnectionState()
  2190  	}
  2191  	if req.Body == nil {
  2192  		req.Body = eofReader
  2193  	}
  2194  	if req.RemoteAddr == "" {
  2195  		req.RemoteAddr = h.c.RemoteAddr().String()
  2196  	}
  2197  	h.h.ServeHTTP(rw, req)
  2198  }
  2199  
  2200  // loggingConn is used for debugging.
  2201  type loggingConn struct {
  2202  	name string
  2203  	net.Conn
  2204  }
  2205  
  2206  var (
  2207  	uniqNameMu   sync.Mutex
  2208  	uniqNameNext = make(map[string]int)
  2209  )
  2210  
  2211  func newLoggingConn(baseName string, c net.Conn) net.Conn {
  2212  	uniqNameMu.Lock()
  2213  	defer uniqNameMu.Unlock()
  2214  	uniqNameNext[baseName]++
  2215  	return &loggingConn{
  2216  		name: fmt.Sprintf("%s-%d", baseName, uniqNameNext[baseName]),
  2217  		Conn: c,
  2218  	}
  2219  }
  2220  
  2221  func (c *loggingConn) Write(p []byte) (n int, err error) {
  2222  	log.Printf("%s.Write(%d) = ....", c.name, len(p))
  2223  	n, err = c.Conn.Write(p)
  2224  	log.Printf("%s.Write(%d) = %d, %v", c.name, len(p), n, err)
  2225  	return
  2226  }
  2227  
  2228  func (c *loggingConn) Read(p []byte) (n int, err error) {
  2229  	log.Printf("%s.Read(%d) = ....", c.name, len(p))
  2230  	n, err = c.Conn.Read(p)
  2231  	log.Printf("%s.Read(%d) = %d, %v", c.name, len(p), n, err)
  2232  	return
  2233  }
  2234  
  2235  func (c *loggingConn) Close() (err error) {
  2236  	log.Printf("%s.Close() = ...", c.name)
  2237  	err = c.Conn.Close()
  2238  	log.Printf("%s.Close() = %v", c.name, err)
  2239  	return
  2240  }
  2241  
  2242  // checkConnErrorWriter writes to c.rwc and records any write errors to c.werr.
  2243  // It only contains one field (and a pointer field at that), so it
  2244  // fits in an interface value without an extra allocation.
  2245  type checkConnErrorWriter struct {
  2246  	c *conn
  2247  }
  2248  
  2249  func (w checkConnErrorWriter) Write(p []byte) (n int, err error) {
  2250  	n, err = w.c.w.Write(p) // c.w == c.rwc, except after a hijack, when rwc is nil.
  2251  	if err != nil && w.c.werr == nil {
  2252  		w.c.werr = err
  2253  	}
  2254  	return
  2255  }
  2256  
  2257  func numLeadingCRorLF(v []byte) (n int) {
  2258  	for _, b := range v {
  2259  		if b == '\r' || b == '\n' {
  2260  			n++
  2261  			continue
  2262  		}
  2263  		break
  2264  	}
  2265  	return
  2266  
  2267  }