github.com/zxy12/golang151_with_comment@v0.0.0-20190507085033-721809559d3c/runtime/mgc.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // TODO(rsc): The code having to do with the heap bitmap needs very serious cleanup.
     6  // It has gotten completely out of control.
     7  
     8  // Garbage collector (GC).
     9  //
    10  // The GC runs concurrently with mutator threads, is type accurate (aka precise), allows multiple
    11  // GC thread to run in parallel. It is a concurrent mark and sweep that uses a write barrier. It is
    12  // non-generational and non-compacting. Allocation is done using size segregated per P allocation
    13  // areas to minimize fragmentation while eliminating locks in the common case.
    14  //
    15  // The algorithm decomposes into several steps.
    16  // This is a high level description of the algorithm being used. For an overview of GC a good
    17  // place to start is Richard Jones' gchandbook.org.
    18  //
    19  // The algorithm's intellectual heritage includes Dijkstra's on-the-fly algorithm, see
    20  // Edsger W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten, and E. F. M. Steffens. 1978.
    21  // On-the-fly garbage collection: an exercise in cooperation. Commun. ACM 21, 11 (November 1978),
    22  // 966-975.
    23  // For journal quality proofs that these steps are complete, correct, and terminate see
    24  // Hudson, R., and Moss, J.E.B. Copying Garbage Collection without stopping the world.
    25  // Concurrency and Computation: Practice and Experience 15(3-5), 2003.
    26  //
    27  //  0. Set phase = GCscan from GCoff.
    28  //  1. Wait for all P's to acknowledge phase change.
    29  //         At this point all goroutines have passed through a GC safepoint and
    30  //         know we are in the GCscan phase.
    31  //  2. GC scans all goroutine stacks, mark and enqueues all encountered pointers
    32  //       (marking avoids most duplicate enqueuing but races may produce benign duplication).
    33  //       Preempted goroutines are scanned before P schedules next goroutine.
    34  //  3. Set phase = GCmark.
    35  //  4. Wait for all P's to acknowledge phase change.
    36  //  5. Now write barrier marks and enqueues black, grey, or white to white pointers.
    37  //       Malloc still allocates white (non-marked) objects.
    38  //  6. Meanwhile GC transitively walks the heap marking reachable objects.
    39  //  7. When GC finishes marking heap, it preempts P's one-by-one and
    40  //       retakes partial wbufs (filled by write barrier or during a stack scan of the goroutine
    41  //       currently scheduled on the P).
    42  //  8. Once the GC has exhausted all available marking work it sets phase = marktermination.
    43  //  9. Wait for all P's to acknowledge phase change.
    44  // 10. Malloc now allocates black objects, so number of unmarked reachable objects
    45  //        monotonically decreases.
    46  // 11. GC preempts P's one-by-one taking partial wbufs and marks all unmarked yet
    47  //        reachable objects.
    48  // 12. When GC completes a full cycle over P's and discovers no new grey
    49  //         objects, (which means all reachable objects are marked) set phase = GCoff.
    50  // 13. Wait for all P's to acknowledge phase change.
    51  // 14. Now malloc allocates white (but sweeps spans before use).
    52  //         Write barrier becomes nop.
    53  // 15. GC does background sweeping, see description below.
    54  // 16. When sufficient allocation has taken place replay the sequence starting at 0 above,
    55  //         see discussion of GC rate below.
    56  
    57  // Changing phases.
    58  // Phases are changed by setting the gcphase to the next phase and possibly calling ackgcphase.
    59  // All phase action must be benign in the presence of a change.
    60  // Starting with GCoff
    61  // GCoff to GCscan
    62  //     GSscan scans stacks and globals greying them and never marks an object black.
    63  //     Once all the P's are aware of the new phase they will scan gs on preemption.
    64  //     This means that the scanning of preempted gs can't start until all the Ps
    65  //     have acknowledged.
    66  //     When a stack is scanned, this phase also installs stack barriers to
    67  //     track how much of the stack has been active.
    68  //     This transition enables write barriers because stack barriers
    69  //     assume that writes to higher frames will be tracked by write
    70  //     barriers. Technically this only needs write barriers for writes
    71  //     to stack slots, but we enable write barriers in general.
    72  // GCscan to GCmark
    73  //     In GCmark, work buffers are drained until there are no more
    74  //     pointers to scan.
    75  //     No scanning of objects (making them black) can happen until all
    76  //     Ps have enabled the write barrier, but that already happened in
    77  //     the transition to GCscan.
    78  // GCmark to GCmarktermination
    79  //     The only change here is that we start allocating black so the Ps must acknowledge
    80  //     the change before we begin the termination algorithm
    81  // GCmarktermination to GSsweep
    82  //     Object currently on the freelist must be marked black for this to work.
    83  //     Are things on the free lists black or white? How does the sweep phase work?
    84  
    85  // Concurrent sweep.
    86  //
    87  // The sweep phase proceeds concurrently with normal program execution.
    88  // The heap is swept span-by-span both lazily (when a goroutine needs another span)
    89  // and concurrently in a background goroutine (this helps programs that are not CPU bound).
    90  // At the end of STW mark termination all spans are marked as "needs sweeping".
    91  //
    92  // The background sweeper goroutine simply sweeps spans one-by-one.
    93  //
    94  // To avoid requesting more OS memory while there are unswept spans, when a
    95  // goroutine needs another span, it first attempts to reclaim that much memory
    96  // by sweeping. When a goroutine needs to allocate a new small-object span, it
    97  // sweeps small-object spans for the same object size until it frees at least
    98  // one object. When a goroutine needs to allocate large-object span from heap,
    99  // it sweeps spans until it frees at least that many pages into heap. There is
   100  // one case where this may not suffice: if a goroutine sweeps and frees two
   101  // nonadjacent one-page spans to the heap, it will allocate a new two-page
   102  // span, but there can still be other one-page unswept spans which could be
   103  // combined into a two-page span.
   104  //
   105  // It's critical to ensure that no operations proceed on unswept spans (that would corrupt
   106  // mark bits in GC bitmap). During GC all mcaches are flushed into the central cache,
   107  // so they are empty. When a goroutine grabs a new span into mcache, it sweeps it.
   108  // When a goroutine explicitly frees an object or sets a finalizer, it ensures that
   109  // the span is swept (either by sweeping it, or by waiting for the concurrent sweep to finish).
   110  // The finalizer goroutine is kicked off only when all spans are swept.
   111  // When the next GC starts, it sweeps all not-yet-swept spans (if any).
   112  
   113  // GC rate.
   114  // Next GC is after we've allocated an extra amount of memory proportional to
   115  // the amount already in use. The proportion is controlled by GOGC environment variable
   116  // (100 by default). If GOGC=100 and we're using 4M, we'll GC again when we get to 8M
   117  // (this mark is tracked in next_gc variable). This keeps the GC cost in linear
   118  // proportion to the allocation cost. Adjusting GOGC just changes the linear constant
   119  // (and also the amount of extra memory used).
   120  
   121  package runtime
   122  
   123  import "unsafe"
   124  
   125  const (
   126  	_DebugGC         = 0
   127  	_ConcurrentSweep = true
   128  	_FinBlockSize    = 4 * 1024
   129  	_RootData        = 0
   130  	_RootBss         = 1
   131  	_RootFinalizers  = 2
   132  	_RootSpans       = 3
   133  	_RootFlushCaches = 4
   134  	_RootCount       = 5
   135  
   136  	debugStackBarrier = false
   137  
   138  	// sweepMinHeapDistance is a lower bound on the heap distance
   139  	// (in bytes) reserved for concurrent sweeping between GC
   140  	// cycles. This will be scaled by gcpercent/100.
   141  	sweepMinHeapDistance = 1024 * 1024
   142  )
   143  
   144  // firstStackBarrierOffset is the approximate byte offset at
   145  // which to place the first stack barrier from the current SP.
   146  // This is a lower bound on how much stack will have to be
   147  // re-scanned during mark termination. Subsequent barriers are
   148  // placed at firstStackBarrierOffset * 2^n offsets.
   149  //
   150  // For debugging, this can be set to 0, which will install a
   151  // stack barrier at every frame. If you do this, you may also
   152  // have to raise _StackMin, since the stack barrier
   153  // bookkeeping will use a large amount of each stack.
   154  var firstStackBarrierOffset = 1024
   155  
   156  // heapminimum is the minimum heap size at which to trigger GC.
   157  // For small heaps, this overrides the usual GOGC*live set rule.
   158  //
   159  // When there is a very small live set but a lot of allocation, simply
   160  // collecting when the heap reaches GOGC*live results in many GC
   161  // cycles and high total per-GC overhead. This minimum amortizes this
   162  // per-GC overhead while keeping the heap reasonably small.
   163  //
   164  // During initialization this is set to 4MB*GOGC/100. In the case of
   165  // GOGC==0, this will set heapminimum to 0, resulting in constant
   166  // collection even when the heap size is small, which is useful for
   167  // debugging.
   168  var heapminimum uint64 = defaultHeapMinimum
   169  
   170  // defaultHeapMinimum is the value of heapminimum for GOGC==100.
   171  const defaultHeapMinimum = 4 << 20
   172  
   173  // Initialized from $GOGC.  GOGC=off means no GC.
   174  var gcpercent int32
   175  
   176  func gcinit() {
   177  	if unsafe.Sizeof(workbuf{}) != _WorkbufSize {
   178  		throw("size of Workbuf is suboptimal")
   179  	}
   180  
   181  	work.markfor = parforalloc(_MaxGcproc)
   182  	_ = setGCPercent(readgogc())
   183  	for datap := &firstmoduledata; datap != nil; datap = datap.next {
   184  		datap.gcdatamask = progToPointerMask((*byte)(unsafe.Pointer(datap.gcdata)), datap.edata-datap.data)
   185  		datap.gcbssmask = progToPointerMask((*byte)(unsafe.Pointer(datap.gcbss)), datap.ebss-datap.bss)
   186  	}
   187  	memstats.next_gc = heapminimum
   188  }
   189  
   190  func readgogc() int32 {
   191  	p := gogetenv("GOGC")
   192  	if p == "" {
   193  		return 100
   194  	}
   195  	if p == "off" {
   196  		return -1
   197  	}
   198  	return int32(atoi(p))
   199  }
   200  
   201  // gcenable is called after the bulk of the runtime initialization,
   202  // just before we're about to start letting user code run.
   203  // It kicks off the background sweeper goroutine and enables GC.
   204  func gcenable() {
   205  	c := make(chan int, 1)
   206  	go bgsweep(c)
   207  	<-c
   208  	memstats.enablegc = true // now that runtime is initialized, GC is okay
   209  }
   210  
   211  func setGCPercent(in int32) (out int32) {
   212  	lock(&mheap_.lock)
   213  	out = gcpercent
   214  	if in < 0 {
   215  		in = -1
   216  	}
   217  	gcpercent = in
   218  	heapminimum = defaultHeapMinimum * uint64(gcpercent) / 100
   219  	unlock(&mheap_.lock)
   220  	return out
   221  }
   222  
   223  // Garbage collector phase.
   224  // Indicates to write barrier and sychronization task to preform.
   225  var gcphase uint32
   226  var writeBarrierEnabled bool // compiler emits references to this in write barriers
   227  
   228  // gcBlackenEnabled is 1 if mutator assists and background mark
   229  // workers are allowed to blacken objects. This must only be set when
   230  // gcphase == _GCmark.
   231  var gcBlackenEnabled uint32
   232  
   233  // gcBlackenPromptly indicates that optimizations that may
   234  // hide work from the global work queue should be disabled.
   235  //
   236  // If gcBlackenPromptly is true, per-P gcWork caches should
   237  // be flushed immediately and new objects should be allocated black.
   238  //
   239  // There is a tension between allocating objects white and
   240  // allocating them black. If white and the objects die before being
   241  // marked they can be collected during this GC cycle. On the other
   242  // hand allocating them black will reduce _GCmarktermination latency
   243  // since more work is done in the mark phase. This tension is resolved
   244  // by allocating white until the mark phase is approaching its end and
   245  // then allocating black for the remainder of the mark phase.
   246  var gcBlackenPromptly bool
   247  
   248  const (
   249  	_GCoff             = iota // GC not running; sweeping in background, write barrier disabled
   250  	_GCstw                    // unused state
   251  	_GCscan                   // GC collecting roots into workbufs, write barrier ENABLED
   252  	_GCmark                   // GC marking from workbufs, write barrier ENABLED
   253  	_GCmarktermination        // GC mark termination: allocate black, P's help GC, write barrier ENABLED
   254  )
   255  
   256  //go:nosplit
   257  func setGCPhase(x uint32) {
   258  	atomicstore(&gcphase, x)
   259  	writeBarrierEnabled = gcphase == _GCmark || gcphase == _GCmarktermination || gcphase == _GCscan
   260  }
   261  
   262  // gcMarkWorkerMode represents the mode that a concurrent mark worker
   263  // should operate in.
   264  //
   265  // Concurrent marking happens through four different mechanisms. One
   266  // is mutator assists, which happen in response to allocations and are
   267  // not scheduled. The other three are variations in the per-P mark
   268  // workers and are distinguished by gcMarkWorkerMode.
   269  type gcMarkWorkerMode int
   270  
   271  const (
   272  	// gcMarkWorkerDedicatedMode indicates that the P of a mark
   273  	// worker is dedicated to running that mark worker. The mark
   274  	// worker should run without preemption until concurrent mark
   275  	// is done.
   276  	gcMarkWorkerDedicatedMode gcMarkWorkerMode = iota
   277  
   278  	// gcMarkWorkerFractionalMode indicates that a P is currently
   279  	// running the "fractional" mark worker. The fractional worker
   280  	// is necessary when GOMAXPROCS*gcGoalUtilization is not an
   281  	// integer. The fractional worker should run until it is
   282  	// preempted and will be scheduled to pick up the fractional
   283  	// part of GOMAXPROCS*gcGoalUtilization.
   284  	gcMarkWorkerFractionalMode
   285  
   286  	// gcMarkWorkerIdleMode indicates that a P is running the mark
   287  	// worker because it has nothing else to do. The idle worker
   288  	// should run until it is preempted and account its time
   289  	// against gcController.idleMarkTime.
   290  	gcMarkWorkerIdleMode
   291  )
   292  
   293  // gcController implements the GC pacing controller that determines
   294  // when to trigger concurrent garbage collection and how much marking
   295  // work to do in mutator assists and background marking.
   296  //
   297  // It uses a feedback control algorithm to adjust the memstats.next_gc
   298  // trigger based on the heap growth and GC CPU utilization each cycle.
   299  // This algorithm optimizes for heap growth to match GOGC and for CPU
   300  // utilization between assist and background marking to be 25% of
   301  // GOMAXPROCS. The high-level design of this algorithm is documented
   302  // at https://golang.org/s/go15gcpacing.
   303  var gcController = gcControllerState{
   304  	// Initial trigger ratio guess.
   305  	triggerRatio: 7 / 8.0,
   306  }
   307  
   308  type gcControllerState struct {
   309  	// scanWork is the total scan work performed this cycle. This
   310  	// is updated atomically during the cycle. Updates may be
   311  	// batched arbitrarily, since the value is only read at the
   312  	// end of the cycle.
   313  	//
   314  	// Currently this is the bytes of heap scanned. For most uses,
   315  	// this is an opaque unit of work, but for estimation the
   316  	// definition is important.
   317  	scanWork int64
   318  
   319  	// bgScanCredit is the scan work credit accumulated by the
   320  	// concurrent background scan. This credit is accumulated by
   321  	// the background scan and stolen by mutator assists. This is
   322  	// updated atomically. Updates occur in bounded batches, since
   323  	// it is both written and read throughout the cycle.
   324  	bgScanCredit int64
   325  
   326  	// assistTime is the nanoseconds spent in mutator assists
   327  	// during this cycle. This is updated atomically. Updates
   328  	// occur in bounded batches, since it is both written and read
   329  	// throughout the cycle.
   330  	assistTime int64
   331  
   332  	// dedicatedMarkTime is the nanoseconds spent in dedicated
   333  	// mark workers during this cycle. This is updated atomically
   334  	// at the end of the concurrent mark phase.
   335  	dedicatedMarkTime int64
   336  
   337  	// fractionalMarkTime is the nanoseconds spent in the
   338  	// fractional mark worker during this cycle. This is updated
   339  	// atomically throughout the cycle and will be up-to-date if
   340  	// the fractional mark worker is not currently running.
   341  	fractionalMarkTime int64
   342  
   343  	// idleMarkTime is the nanoseconds spent in idle marking
   344  	// during this cycle. This is updated atomically throughout
   345  	// the cycle.
   346  	idleMarkTime int64
   347  
   348  	// bgMarkStartTime is the absolute start time in nanoseconds
   349  	// that the background mark phase started.
   350  	bgMarkStartTime int64
   351  
   352  	// assistTime is the absolute start time in nanoseconds that
   353  	// mutator assists were enabled.
   354  	assistStartTime int64
   355  
   356  	// heapGoal is the goal memstats.heap_live for when this cycle
   357  	// ends. This is computed at the beginning of each cycle.
   358  	heapGoal uint64
   359  
   360  	// dedicatedMarkWorkersNeeded is the number of dedicated mark
   361  	// workers that need to be started. This is computed at the
   362  	// beginning of each cycle and decremented atomically as
   363  	// dedicated mark workers get started.
   364  	dedicatedMarkWorkersNeeded int64
   365  
   366  	// assistRatio is the ratio of allocated bytes to scan work
   367  	// that should be performed by mutator assists. This is
   368  	// computed at the beginning of each cycle and updated every
   369  	// time heap_scan is updated.
   370  	assistRatio float64
   371  
   372  	// fractionalUtilizationGoal is the fraction of wall clock
   373  	// time that should be spent in the fractional mark worker.
   374  	// For example, if the overall mark utilization goal is 25%
   375  	// and GOMAXPROCS is 6, one P will be a dedicated mark worker
   376  	// and this will be set to 0.5 so that 50% of the time some P
   377  	// is in a fractional mark worker. This is computed at the
   378  	// beginning of each cycle.
   379  	fractionalUtilizationGoal float64
   380  
   381  	// triggerRatio is the heap growth ratio at which the garbage
   382  	// collection cycle should start. E.g., if this is 0.6, then
   383  	// GC should start when the live heap has reached 1.6 times
   384  	// the heap size marked by the previous cycle. This is updated
   385  	// at the end of of each cycle.
   386  	triggerRatio float64
   387  
   388  	_ [_CacheLineSize]byte
   389  
   390  	// fractionalMarkWorkersNeeded is the number of fractional
   391  	// mark workers that need to be started. This is either 0 or
   392  	// 1. This is potentially updated atomically at every
   393  	// scheduling point (hence it gets its own cache line).
   394  	fractionalMarkWorkersNeeded int64
   395  
   396  	_ [_CacheLineSize]byte
   397  }
   398  
   399  // startCycle resets the GC controller's state and computes estimates
   400  // for a new GC cycle. The caller must hold worldsema.
   401  func (c *gcControllerState) startCycle() {
   402  	c.scanWork = 0
   403  	c.bgScanCredit = 0
   404  	c.assistTime = 0
   405  	c.dedicatedMarkTime = 0
   406  	c.fractionalMarkTime = 0
   407  	c.idleMarkTime = 0
   408  
   409  	// If this is the first GC cycle or we're operating on a very
   410  	// small heap, fake heap_marked so it looks like next_gc is
   411  	// the appropriate growth from heap_marked, even though the
   412  	// real heap_marked may not have a meaningful value (on the
   413  	// first cycle) or may be much smaller (resulting in a large
   414  	// error response).
   415  	if memstats.next_gc <= heapminimum {
   416  		memstats.heap_marked = uint64(float64(memstats.next_gc) / (1 + c.triggerRatio))
   417  		memstats.heap_reachable = memstats.heap_marked
   418  	}
   419  
   420  	// Compute the heap goal for this cycle
   421  	c.heapGoal = memstats.heap_reachable + memstats.heap_reachable*uint64(gcpercent)/100
   422  
   423  	// Compute the total mark utilization goal and divide it among
   424  	// dedicated and fractional workers.
   425  	totalUtilizationGoal := float64(gomaxprocs) * gcGoalUtilization
   426  	c.dedicatedMarkWorkersNeeded = int64(totalUtilizationGoal)
   427  	c.fractionalUtilizationGoal = totalUtilizationGoal - float64(c.dedicatedMarkWorkersNeeded)
   428  	if c.fractionalUtilizationGoal > 0 {
   429  		c.fractionalMarkWorkersNeeded = 1
   430  	} else {
   431  		c.fractionalMarkWorkersNeeded = 0
   432  	}
   433  
   434  	// Clear per-P state
   435  	for _, p := range &allp {
   436  		if p == nil {
   437  			break
   438  		}
   439  		p.gcAssistTime = 0
   440  	}
   441  
   442  	// Compute initial values for controls that are updated
   443  	// throughout the cycle.
   444  	c.revise()
   445  
   446  	if debug.gcpacertrace > 0 {
   447  		print("pacer: assist ratio=", c.assistRatio,
   448  			" (scan ", memstats.heap_scan>>20, " MB in ",
   449  			work.initialHeapLive>>20, "->",
   450  			c.heapGoal>>20, " MB)",
   451  			" workers=", c.dedicatedMarkWorkersNeeded,
   452  			"+", c.fractionalMarkWorkersNeeded, "\n")
   453  	}
   454  }
   455  
   456  // revise updates the assist ratio during the GC cycle to account for
   457  // improved estimates. This should be called either under STW or
   458  // whenever memstats.heap_scan is updated (with mheap_.lock held).
   459  func (c *gcControllerState) revise() {
   460  	// Compute the expected scan work. This is a strict upper
   461  	// bound on the possible scan work in the current heap.
   462  	//
   463  	// You might consider dividing this by 2 (or by
   464  	// (100+GOGC)/100) to counter this over-estimation, but
   465  	// benchmarks show that this has almost no effect on mean
   466  	// mutator utilization, heap size, or assist time and it
   467  	// introduces the danger of under-estimating and letting the
   468  	// mutator outpace the garbage collector.
   469  	scanWorkExpected := memstats.heap_scan
   470  
   471  	// Compute the mutator assist ratio so by the time the mutator
   472  	// allocates the remaining heap bytes up to next_gc, it will
   473  	// have done (or stolen) the estimated amount of scan work.
   474  	heapDistance := int64(c.heapGoal) - int64(work.initialHeapLive)
   475  	if heapDistance <= 1024*1024 {
   476  		// heapDistance can be negative if GC start is delayed
   477  		// or if the allocation that pushed heap_live over
   478  		// next_gc is large or if the trigger is really close
   479  		// to GOGC. We don't want to set the assist negative
   480  		// (or divide by zero, or set it really high), so
   481  		// enforce a minimum on the distance.
   482  		heapDistance = 1024 * 1024
   483  	}
   484  	c.assistRatio = float64(scanWorkExpected) / float64(heapDistance)
   485  }
   486  
   487  // endCycle updates the GC controller state at the end of the
   488  // concurrent part of the GC cycle.
   489  func (c *gcControllerState) endCycle() {
   490  	h_t := c.triggerRatio // For debugging
   491  
   492  	// Proportional response gain for the trigger controller. Must
   493  	// be in [0, 1]. Lower values smooth out transient effects but
   494  	// take longer to respond to phase changes. Higher values
   495  	// react to phase changes quickly, but are more affected by
   496  	// transient changes. Values near 1 may be unstable.
   497  	const triggerGain = 0.5
   498  
   499  	// Compute next cycle trigger ratio. First, this computes the
   500  	// "error" for this cycle; that is, how far off the trigger
   501  	// was from what it should have been, accounting for both heap
   502  	// growth and GC CPU utilization. We compute the actual heap
   503  	// growth during this cycle and scale that by how far off from
   504  	// the goal CPU utilization we were (to estimate the heap
   505  	// growth if we had the desired CPU utilization). The
   506  	// difference between this estimate and the GOGC-based goal
   507  	// heap growth is the error.
   508  	//
   509  	// TODO(austin): next_gc is based on heap_reachable, not
   510  	// heap_marked, which means the actual growth ratio
   511  	// technically isn't comparable to the trigger ratio.
   512  	goalGrowthRatio := float64(gcpercent) / 100
   513  	actualGrowthRatio := float64(memstats.heap_live)/float64(memstats.heap_marked) - 1
   514  	assistDuration := nanotime() - c.assistStartTime
   515  
   516  	// Assume background mark hit its utilization goal.
   517  	utilization := gcGoalUtilization
   518  	// Add assist utilization; avoid divide by zero.
   519  	if assistDuration > 0 {
   520  		utilization += float64(c.assistTime) / float64(assistDuration*int64(gomaxprocs))
   521  	}
   522  
   523  	triggerError := goalGrowthRatio - c.triggerRatio - utilization/gcGoalUtilization*(actualGrowthRatio-c.triggerRatio)
   524  
   525  	// Finally, we adjust the trigger for next time by this error,
   526  	// damped by the proportional gain.
   527  	c.triggerRatio += triggerGain * triggerError
   528  	if c.triggerRatio < 0 {
   529  		// This can happen if the mutator is allocating very
   530  		// quickly or the GC is scanning very slowly.
   531  		c.triggerRatio = 0
   532  	} else if c.triggerRatio > goalGrowthRatio*0.95 {
   533  		// Ensure there's always a little margin so that the
   534  		// mutator assist ratio isn't infinity.
   535  		c.triggerRatio = goalGrowthRatio * 0.95
   536  	}
   537  
   538  	if debug.gcpacertrace > 0 {
   539  		// Print controller state in terms of the design
   540  		// document.
   541  		H_m_prev := memstats.heap_marked
   542  		H_T := memstats.next_gc
   543  		h_a := actualGrowthRatio
   544  		H_a := memstats.heap_live
   545  		h_g := goalGrowthRatio
   546  		H_g := int64(float64(H_m_prev) * (1 + h_g))
   547  		u_a := utilization
   548  		u_g := gcGoalUtilization
   549  		W_a := c.scanWork
   550  		print("pacer: H_m_prev=", H_m_prev,
   551  			" h_t=", h_t, " H_T=", H_T,
   552  			" h_a=", h_a, " H_a=", H_a,
   553  			" h_g=", h_g, " H_g=", H_g,
   554  			" u_a=", u_a, " u_g=", u_g,
   555  			" W_a=", W_a,
   556  			" goalΔ=", goalGrowthRatio-h_t,
   557  			" actualΔ=", h_a-h_t,
   558  			" u_a/u_g=", u_a/u_g,
   559  			"\n")
   560  	}
   561  }
   562  
   563  // findRunnableGCWorker returns the background mark worker for _p_ if it
   564  // should be run. This must only be called when gcBlackenEnabled != 0.
   565  func (c *gcControllerState) findRunnableGCWorker(_p_ *p) *g {
   566  	if gcBlackenEnabled == 0 {
   567  		throw("gcControllerState.findRunnable: blackening not enabled")
   568  	}
   569  	if _p_.gcBgMarkWorker == nil {
   570  		throw("gcControllerState.findRunnable: no background mark worker")
   571  	}
   572  	if work.bgMark1.done != 0 && work.bgMark2.done != 0 {
   573  		// Background mark is done. Don't schedule background
   574  		// mark worker any more. (This is not just an
   575  		// optimization. Without this we can spin scheduling
   576  		// the background worker and having it return
   577  		// immediately with no work to do.)
   578  		return nil
   579  	}
   580  
   581  	decIfPositive := func(ptr *int64) bool {
   582  		if *ptr > 0 {
   583  			if xaddint64(ptr, -1) >= 0 {
   584  				return true
   585  			}
   586  			// We lost a race
   587  			xaddint64(ptr, +1)
   588  		}
   589  		return false
   590  	}
   591  
   592  	if decIfPositive(&c.dedicatedMarkWorkersNeeded) {
   593  		// This P is now dedicated to marking until the end of
   594  		// the concurrent mark phase.
   595  		_p_.gcMarkWorkerMode = gcMarkWorkerDedicatedMode
   596  		// TODO(austin): This P isn't going to run anything
   597  		// else for a while, so kick everything out of its run
   598  		// queue.
   599  	} else {
   600  		if _p_.gcw.wbuf == 0 && work.full == 0 && work.partial == 0 {
   601  			// No work to be done right now. This can
   602  			// happen at the end of the mark phase when
   603  			// there are still assists tapering off. Don't
   604  			// bother running background mark because
   605  			// it'll just return immediately.
   606  			if work.nwait == work.nproc {
   607  				// There are also no workers, which
   608  				// means we've reached a completion point.
   609  				// There may not be any workers to
   610  				// signal it, so signal it here.
   611  				readied := false
   612  				if gcBlackenPromptly {
   613  					if work.bgMark1.done == 0 {
   614  						throw("completing mark 2, but bgMark1.done == 0")
   615  					}
   616  					readied = work.bgMark2.complete()
   617  				} else {
   618  					readied = work.bgMark1.complete()
   619  				}
   620  				if readied {
   621  					// complete just called ready,
   622  					// but we're inside the
   623  					// scheduler. Let it know that
   624  					// that's okay.
   625  					resetspinning()
   626  				}
   627  			}
   628  			return nil
   629  		}
   630  		if !decIfPositive(&c.fractionalMarkWorkersNeeded) {
   631  			// No more workers are need right now.
   632  			return nil
   633  		}
   634  
   635  		// This P has picked the token for the fractional worker.
   636  		// Is the GC currently under or at the utilization goal?
   637  		// If so, do more work.
   638  		//
   639  		// We used to check whether doing one time slice of work
   640  		// would remain under the utilization goal, but that has the
   641  		// effect of delaying work until the mutator has run for
   642  		// enough time slices to pay for the work. During those time
   643  		// slices, write barriers are enabled, so the mutator is running slower.
   644  		// Now instead we do the work whenever we're under or at the
   645  		// utilization work and pay for it by letting the mutator run later.
   646  		// This doesn't change the overall utilization averages, but it
   647  		// front loads the GC work so that the GC finishes earlier and
   648  		// write barriers can be turned off sooner, effectively giving
   649  		// the mutator a faster machine.
   650  		//
   651  		// The old, slower behavior can be restored by setting
   652  		//	gcForcePreemptNS = forcePreemptNS.
   653  		const gcForcePreemptNS = 0
   654  
   655  		// TODO(austin): We could fast path this and basically
   656  		// eliminate contention on c.fractionalMarkWorkersNeeded by
   657  		// precomputing the minimum time at which it's worth
   658  		// next scheduling the fractional worker. Then Ps
   659  		// don't have to fight in the window where we've
   660  		// passed that deadline and no one has started the
   661  		// worker yet.
   662  		//
   663  		// TODO(austin): Shorter preemption interval for mark
   664  		// worker to improve fairness and give this
   665  		// finer-grained control over schedule?
   666  		now := nanotime() - gcController.bgMarkStartTime
   667  		then := now + gcForcePreemptNS
   668  		timeUsed := c.fractionalMarkTime + gcForcePreemptNS
   669  		if then > 0 && float64(timeUsed)/float64(then) > c.fractionalUtilizationGoal {
   670  			// Nope, we'd overshoot the utilization goal
   671  			xaddint64(&c.fractionalMarkWorkersNeeded, +1)
   672  			return nil
   673  		}
   674  		_p_.gcMarkWorkerMode = gcMarkWorkerFractionalMode
   675  	}
   676  
   677  	// Run the background mark worker
   678  	gp := _p_.gcBgMarkWorker
   679  	casgstatus(gp, _Gwaiting, _Grunnable)
   680  	if trace.enabled {
   681  		traceGoUnpark(gp, 0)
   682  	}
   683  	return gp
   684  }
   685  
   686  // gcGoalUtilization is the goal CPU utilization for background
   687  // marking as a fraction of GOMAXPROCS.
   688  const gcGoalUtilization = 0.25
   689  
   690  // gcBgCreditSlack is the amount of scan work credit background
   691  // scanning can accumulate locally before updating
   692  // gcController.bgScanCredit. Lower values give mutator assists more
   693  // accurate accounting of background scanning. Higher values reduce
   694  // memory contention.
   695  const gcBgCreditSlack = 2000
   696  
   697  // gcAssistTimeSlack is the nanoseconds of mutator assist time that
   698  // can accumulate on a P before updating gcController.assistTime.
   699  const gcAssistTimeSlack = 5000
   700  
   701  // Determine whether to initiate a GC.
   702  // If the GC is already working no need to trigger another one.
   703  // This should establish a feedback loop where if the GC does not
   704  // have sufficient time to complete then more memory will be
   705  // requested from the OS increasing heap size thus allow future
   706  // GCs more time to complete.
   707  // memstat.heap_live read has a benign race.
   708  // A false negative simple does not start a GC, a false positive
   709  // will start a GC needlessly. Neither have correctness issues.
   710  func shouldtriggergc() bool {
   711  	return memstats.heap_live >= memstats.next_gc && atomicloaduint(&bggc.working) == 0
   712  }
   713  
   714  // bgMarkSignal synchronizes the GC coordinator and background mark workers.
   715  type bgMarkSignal struct {
   716  	// Workers race to cas to 1. Winner signals coordinator.
   717  	done uint32
   718  	// Coordinator to wake up.
   719  	lock mutex
   720  	g    *g
   721  	wake bool
   722  }
   723  
   724  func (s *bgMarkSignal) wait() {
   725  	lock(&s.lock)
   726  	if s.wake {
   727  		// Wakeup already happened
   728  		unlock(&s.lock)
   729  	} else {
   730  		s.g = getg()
   731  		goparkunlock(&s.lock, "mark wait (idle)", traceEvGoBlock, 1)
   732  	}
   733  	s.wake = false
   734  	s.g = nil
   735  }
   736  
   737  // complete signals the completion of this phase of marking. This can
   738  // be called multiple times during a cycle; only the first call has
   739  // any effect.
   740  //
   741  // The caller should arrange to deschedule itself as soon as possible
   742  // after calling complete in order to let the coordinator goroutine
   743  // run.
   744  func (s *bgMarkSignal) complete() bool {
   745  	if cas(&s.done, 0, 1) {
   746  		// This is the first worker to reach this completion point.
   747  		// Signal the main GC goroutine.
   748  		lock(&s.lock)
   749  		if s.g == nil {
   750  			// It hasn't parked yet.
   751  			s.wake = true
   752  		} else {
   753  			ready(s.g, 0)
   754  		}
   755  		unlock(&s.lock)
   756  		return true
   757  	}
   758  	return false
   759  }
   760  
   761  func (s *bgMarkSignal) clear() {
   762  	s.done = 0
   763  }
   764  
   765  var work struct {
   766  	full  uint64 // lock-free list of full blocks workbuf
   767  	empty uint64 // lock-free list of empty blocks workbuf
   768  	// TODO(rlh): partial no longer used, remove. (issue #11922)
   769  	partial uint64                // lock-free list of partially filled blocks workbuf
   770  	pad0    [_CacheLineSize]uint8 // prevents false-sharing between full/empty and nproc/nwait
   771  	nproc   uint32
   772  	tstart  int64
   773  	nwait   uint32
   774  	ndone   uint32
   775  	alldone note
   776  	markfor *parfor
   777  
   778  	bgMarkReady note   // signal background mark worker has started
   779  	bgMarkDone  uint32 // cas to 1 when at a background mark completion point
   780  	// Background mark completion signaling
   781  
   782  	// Coordination for the 2 parts of the mark phase.
   783  	bgMark1 bgMarkSignal
   784  	bgMark2 bgMarkSignal
   785  
   786  	// Copy of mheap.allspans for marker or sweeper.
   787  	spans []*mspan
   788  
   789  	// totaltime is the CPU nanoseconds spent in GC since the
   790  	// program started if debug.gctrace > 0.
   791  	totaltime int64
   792  
   793  	// bytesMarked is the number of bytes marked this cycle. This
   794  	// includes bytes blackened in scanned objects, noscan objects
   795  	// that go straight to black, and permagrey objects scanned by
   796  	// markroot during the concurrent scan phase. This is updated
   797  	// atomically during the cycle. Updates may be batched
   798  	// arbitrarily, since the value is only read at the end of the
   799  	// cycle.
   800  	//
   801  	// Because of benign races during marking, this number may not
   802  	// be the exact number of marked bytes, but it should be very
   803  	// close.
   804  	bytesMarked uint64
   805  
   806  	// initialHeapLive is the value of memstats.heap_live at the
   807  	// beginning of this GC cycle.
   808  	initialHeapLive uint64
   809  }
   810  
   811  // GC runs a garbage collection and blocks the caller until the
   812  // garbage collection is complete. It may also block the entire
   813  // program.
   814  func GC() {
   815  	startGC(gcForceBlockMode, false)
   816  }
   817  
   818  const (
   819  	gcBackgroundMode = iota // concurrent GC
   820  	gcForceMode             // stop-the-world GC now
   821  	gcForceBlockMode        // stop-the-world GC now and wait for sweep
   822  )
   823  
   824  // startGC starts a GC cycle. If mode is gcBackgroundMode, this will
   825  // start GC in the background and return. Otherwise, this will block
   826  // until the new GC cycle is started and finishes. If forceTrigger is
   827  // true, it indicates that GC should be started regardless of the
   828  // current heap size.
   829  func startGC(mode int, forceTrigger bool) {
   830  	// The gc is turned off (via enablegc) until the bootstrap has completed.
   831  	// Also, malloc gets called in the guts of a number of libraries that might be
   832  	// holding locks. To avoid deadlocks during stop-the-world, don't bother
   833  	// trying to run gc while holding a lock. The next mallocgc without a lock
   834  	// will do the gc instead.
   835  	mp := acquirem()
   836  	if gp := getg(); gp == mp.g0 || mp.locks > 1 || mp.preemptoff != "" || !memstats.enablegc || panicking != 0 || gcpercent < 0 {
   837  		releasem(mp)
   838  		return
   839  	}
   840  	releasem(mp)
   841  	mp = nil
   842  
   843  	if debug.gcstoptheworld == 1 {
   844  		mode = gcForceMode
   845  	} else if debug.gcstoptheworld == 2 {
   846  		mode = gcForceBlockMode
   847  	}
   848  
   849  	if mode != gcBackgroundMode {
   850  		// special synchronous cases
   851  		gc(mode)
   852  		return
   853  	}
   854  
   855  	// trigger concurrent GC
   856  	readied := false
   857  	lock(&bggc.lock)
   858  	// The trigger was originally checked speculatively, so
   859  	// recheck that this really should trigger GC. (For example,
   860  	// we may have gone through a whole GC cycle since the
   861  	// speculative check.)
   862  	if !(forceTrigger || shouldtriggergc()) {
   863  		unlock(&bggc.lock)
   864  		return
   865  	}
   866  	if !bggc.started {
   867  		bggc.working = 1
   868  		bggc.started = true
   869  		readied = true
   870  		go backgroundgc()
   871  	} else if bggc.working == 0 {
   872  		bggc.working = 1
   873  		readied = true
   874  		ready(bggc.g, 0)
   875  	}
   876  	unlock(&bggc.lock)
   877  	if readied {
   878  		// This G just started or ready()d the GC goroutine.
   879  		// Switch directly to it by yielding.
   880  		Gosched()
   881  	}
   882  }
   883  
   884  // State of the background concurrent GC goroutine.
   885  var bggc struct {
   886  	lock    mutex
   887  	g       *g
   888  	working uint
   889  	started bool
   890  }
   891  
   892  // backgroundgc is running in a goroutine and does the concurrent GC work.
   893  // bggc holds the state of the backgroundgc.
   894  func backgroundgc() {
   895  	bggc.g = getg()
   896  	for {
   897  		gc(gcBackgroundMode)
   898  		lock(&bggc.lock)
   899  		bggc.working = 0
   900  		goparkunlock(&bggc.lock, "Concurrent GC wait", traceEvGoBlock, 1)
   901  	}
   902  }
   903  
   904  func gc(mode int) {
   905  	// Timing/utilization tracking
   906  	var stwprocs, maxprocs int32
   907  	var tSweepTerm, tScan, tInstallWB, tMark, tMarkTerm int64
   908  
   909  	// debug.gctrace variables
   910  	var heap0, heap1, heap2, heapGoal uint64
   911  
   912  	// memstats statistics
   913  	var now, pauseStart, pauseNS int64
   914  
   915  	// Ok, we're doing it!  Stop everybody else
   916  	semacquire(&worldsema, false)
   917  
   918  	// Pick up the remaining unswept/not being swept spans concurrently
   919  	//
   920  	// This shouldn't happen if we're being invoked in background
   921  	// mode since proportional sweep should have just finished
   922  	// sweeping everything, but rounding errors, etc, may leave a
   923  	// few spans unswept. In forced mode, this is necessary since
   924  	// GC can be forced at any point in the sweeping cycle.
   925  	for gosweepone() != ^uintptr(0) {
   926  		sweep.nbgsweep++
   927  	}
   928  
   929  	if trace.enabled {
   930  		traceGCStart()
   931  	}
   932  
   933  	if mode == gcBackgroundMode {
   934  		gcBgMarkStartWorkers()
   935  	}
   936  	now = nanotime()
   937  	stwprocs, maxprocs = gcprocs(), gomaxprocs
   938  	tSweepTerm = now
   939  	heap0 = memstats.heap_live
   940  
   941  	pauseStart = now
   942  	systemstack(stopTheWorldWithSema)
   943  	systemstack(finishsweep_m) // finish sweep before we start concurrent scan.
   944  	// clearpools before we start the GC. If we wait they memory will not be
   945  	// reclaimed until the next GC cycle.
   946  	clearpools()
   947  
   948  	gcResetMarkState()
   949  
   950  	if mode == gcBackgroundMode { // Do as much work concurrently as possible
   951  		gcController.startCycle()
   952  		heapGoal = gcController.heapGoal
   953  
   954  		systemstack(func() {
   955  			// Enter scan phase. This enables write
   956  			// barriers to track changes to stack frames
   957  			// above the stack barrier.
   958  			//
   959  			// TODO: This has evolved to the point where
   960  			// we carefully ensure invariants we no longer
   961  			// depend on. Either:
   962  			//
   963  			// 1) Enable full write barriers for the scan,
   964  			// but eliminate the ragged barrier below
   965  			// (since the start the world ensures all Ps
   966  			// have observed the write barrier enable) and
   967  			// consider draining during the scan.
   968  			//
   969  			// 2) Only enable write barriers for writes to
   970  			// the stack at this point, and then enable
   971  			// write barriers for heap writes when we
   972  			// enter the mark phase. This means we cannot
   973  			// drain in the scan phase and must perform a
   974  			// ragged barrier to ensure all Ps have
   975  			// enabled heap write barriers before we drain
   976  			// or enable assists.
   977  			//
   978  			// 3) Don't install stack barriers over frame
   979  			// boundaries where there are up-pointers.
   980  			setGCPhase(_GCscan)
   981  
   982  			gcBgMarkPrepare() // Must happen before assist enable.
   983  
   984  			// At this point all Ps have enabled the write
   985  			// barrier, thus maintaining the no white to
   986  			// black invariant. Enable mutator assists to
   987  			// put back-pressure on fast allocating
   988  			// mutators.
   989  			atomicstore(&gcBlackenEnabled, 1)
   990  
   991  			// Concurrent scan.
   992  			startTheWorldWithSema()
   993  			now = nanotime()
   994  			pauseNS += now - pauseStart
   995  			tScan = now
   996  			gcController.assistStartTime = now
   997  			gcscan_m()
   998  
   999  			// Enter mark phase.
  1000  			tInstallWB = nanotime()
  1001  			setGCPhase(_GCmark)
  1002  			// Ensure all Ps have observed the phase
  1003  			// change and have write barriers enabled
  1004  			// before any blackening occurs.
  1005  			forEachP(func(*p) {})
  1006  		})
  1007  		// Concurrent mark.
  1008  		tMark = nanotime()
  1009  
  1010  		// Enable background mark workers and wait for
  1011  		// background mark completion.
  1012  		gcController.bgMarkStartTime = nanotime()
  1013  		work.bgMark1.clear()
  1014  		work.bgMark1.wait()
  1015  
  1016  		// The global work list is empty, but there can still be work
  1017  		// sitting in the per-P work caches and there can be more
  1018  		// objects reachable from global roots since they don't have write
  1019  		// barriers. Rescan some roots and flush work caches.
  1020  		systemstack(func() {
  1021  			// rescan global data and bss.
  1022  			markroot(nil, _RootData)
  1023  			markroot(nil, _RootBss)
  1024  
  1025  			// Disallow caching workbufs.
  1026  			gcBlackenPromptly = true
  1027  
  1028  			// Flush all currently cached workbufs. This
  1029  			// also forces any remaining background
  1030  			// workers out of their loop.
  1031  			forEachP(func(_p_ *p) {
  1032  				_p_.gcw.dispose()
  1033  			})
  1034  		})
  1035  
  1036  		// Wait for this more aggressive background mark to complete.
  1037  		work.bgMark2.clear()
  1038  		work.bgMark2.wait()
  1039  
  1040  		// Begin mark termination.
  1041  		now = nanotime()
  1042  		tMarkTerm = now
  1043  		pauseStart = now
  1044  		systemstack(stopTheWorldWithSema)
  1045  		// The gcphase is _GCmark, it will transition to _GCmarktermination
  1046  		// below. The important thing is that the wb remains active until
  1047  		// all marking is complete. This includes writes made by the GC.
  1048  
  1049  		// Flush the gcWork caches. This must be done before
  1050  		// endCycle since endCycle depends on statistics kept
  1051  		// in these caches.
  1052  		gcFlushGCWork()
  1053  
  1054  		gcController.endCycle()
  1055  	} else {
  1056  		// For non-concurrent GC (mode != gcBackgroundMode)
  1057  		// The g stacks have not been scanned so clear g state
  1058  		// such that mark termination scans all stacks.
  1059  		gcResetGState()
  1060  
  1061  		t := nanotime()
  1062  		tScan, tInstallWB, tMark, tMarkTerm = t, t, t, t
  1063  		heapGoal = heap0
  1064  	}
  1065  
  1066  	// World is stopped.
  1067  	// Start marktermination which includes enabling the write barrier.
  1068  	atomicstore(&gcBlackenEnabled, 0)
  1069  	gcBlackenPromptly = false
  1070  	setGCPhase(_GCmarktermination)
  1071  
  1072  	heap1 = memstats.heap_live
  1073  	startTime := nanotime()
  1074  
  1075  	mp := acquirem()
  1076  	mp.preemptoff = "gcing"
  1077  	_g_ := getg()
  1078  	_g_.m.traceback = 2
  1079  	gp := _g_.m.curg
  1080  	casgstatus(gp, _Grunning, _Gwaiting)
  1081  	gp.waitreason = "garbage collection"
  1082  
  1083  	// Run gc on the g0 stack.  We do this so that the g stack
  1084  	// we're currently running on will no longer change.  Cuts
  1085  	// the root set down a bit (g0 stacks are not scanned, and
  1086  	// we don't need to scan gc's internal state).  We also
  1087  	// need to switch to g0 so we can shrink the stack.
  1088  	systemstack(func() {
  1089  		gcMark(startTime)
  1090  		// Must return immediately.
  1091  		// The outer function's stack may have moved
  1092  		// during gcMark (it shrinks stacks, including the
  1093  		// outer function's stack), so we must not refer
  1094  		// to any of its variables. Return back to the
  1095  		// non-system stack to pick up the new addresses
  1096  		// before continuing.
  1097  	})
  1098  
  1099  	systemstack(func() {
  1100  		heap2 = work.bytesMarked
  1101  		if debug.gccheckmark > 0 {
  1102  			// Run a full stop-the-world mark using checkmark bits,
  1103  			// to check that we didn't forget to mark anything during
  1104  			// the concurrent mark process.
  1105  			gcResetGState() // Rescan stacks
  1106  			gcResetMarkState()
  1107  			initCheckmarks()
  1108  			gcMark(startTime)
  1109  			clearCheckmarks()
  1110  		}
  1111  
  1112  		// marking is complete so we can turn the write barrier off
  1113  		setGCPhase(_GCoff)
  1114  		gcSweep(mode)
  1115  
  1116  		if debug.gctrace > 1 {
  1117  			startTime = nanotime()
  1118  			// The g stacks have been scanned so
  1119  			// they have gcscanvalid==true and gcworkdone==true.
  1120  			// Reset these so that all stacks will be rescanned.
  1121  			gcResetGState()
  1122  			gcResetMarkState()
  1123  			finishsweep_m()
  1124  
  1125  			// Still in STW but gcphase is _GCoff, reset to _GCmarktermination
  1126  			// At this point all objects will be found during the gcMark which
  1127  			// does a complete STW mark and object scan.
  1128  			setGCPhase(_GCmarktermination)
  1129  			gcMark(startTime)
  1130  			setGCPhase(_GCoff) // marking is done, turn off wb.
  1131  			gcSweep(mode)
  1132  		}
  1133  	})
  1134  
  1135  	_g_.m.traceback = 0
  1136  	casgstatus(gp, _Gwaiting, _Grunning)
  1137  
  1138  	if trace.enabled {
  1139  		traceGCDone()
  1140  	}
  1141  
  1142  	// all done
  1143  	mp.preemptoff = ""
  1144  
  1145  	if gcphase != _GCoff {
  1146  		throw("gc done but gcphase != _GCoff")
  1147  	}
  1148  
  1149  	// Update timing memstats
  1150  	now, unixNow := nanotime(), unixnanotime()
  1151  	pauseNS += now - pauseStart
  1152  	atomicstore64(&memstats.last_gc, uint64(unixNow)) // must be Unix time to make sense to user
  1153  	memstats.pause_ns[memstats.numgc%uint32(len(memstats.pause_ns))] = uint64(pauseNS)
  1154  	memstats.pause_end[memstats.numgc%uint32(len(memstats.pause_end))] = uint64(unixNow)
  1155  	memstats.pause_total_ns += uint64(pauseNS)
  1156  
  1157  	// Update work.totaltime.
  1158  	sweepTermCpu := int64(stwprocs) * (tScan - tSweepTerm)
  1159  	scanCpu := tInstallWB - tScan
  1160  	installWBCpu := int64(0)
  1161  	// We report idle marking time below, but omit it from the
  1162  	// overall utilization here since it's "free".
  1163  	markCpu := gcController.assistTime + gcController.dedicatedMarkTime + gcController.fractionalMarkTime
  1164  	markTermCpu := int64(stwprocs) * (now - tMarkTerm)
  1165  	cycleCpu := sweepTermCpu + scanCpu + installWBCpu + markCpu + markTermCpu
  1166  	work.totaltime += cycleCpu
  1167  
  1168  	// Compute overall GC CPU utilization.
  1169  	totalCpu := sched.totaltime + (now-sched.procresizetime)*int64(gomaxprocs)
  1170  	memstats.gc_cpu_fraction = float64(work.totaltime) / float64(totalCpu)
  1171  
  1172  	memstats.numgc++
  1173  
  1174  	systemstack(startTheWorldWithSema)
  1175  	semrelease(&worldsema)
  1176  
  1177  	releasem(mp)
  1178  	mp = nil
  1179  
  1180  	if debug.gctrace > 0 {
  1181  		tEnd := now
  1182  		util := int(memstats.gc_cpu_fraction * 100)
  1183  
  1184  		var sbuf [24]byte
  1185  		printlock()
  1186  		print("gc ", memstats.numgc,
  1187  			" @", string(itoaDiv(sbuf[:], uint64(tSweepTerm-runtimeInitTime)/1e6, 3)), "s ",
  1188  			util, "%: ")
  1189  		prev := tSweepTerm
  1190  		for i, ns := range []int64{tScan, tInstallWB, tMark, tMarkTerm, tEnd} {
  1191  			if i != 0 {
  1192  				print("+")
  1193  			}
  1194  			print(string(fmtNSAsMS(sbuf[:], uint64(ns-prev))))
  1195  			prev = ns
  1196  		}
  1197  		print(" ms clock, ")
  1198  		for i, ns := range []int64{sweepTermCpu, scanCpu, installWBCpu, gcController.assistTime, gcController.dedicatedMarkTime + gcController.fractionalMarkTime, gcController.idleMarkTime, markTermCpu} {
  1199  			if i == 4 || i == 5 {
  1200  				// Separate mark time components with /.
  1201  				print("/")
  1202  			} else if i != 0 {
  1203  				print("+")
  1204  			}
  1205  			print(string(fmtNSAsMS(sbuf[:], uint64(ns))))
  1206  		}
  1207  		print(" ms cpu, ",
  1208  			heap0>>20, "->", heap1>>20, "->", heap2>>20, " MB, ",
  1209  			heapGoal>>20, " MB goal, ",
  1210  			maxprocs, " P")
  1211  		if mode != gcBackgroundMode {
  1212  			print(" (forced)")
  1213  		}
  1214  		print("\n")
  1215  		printunlock()
  1216  	}
  1217  	sweep.nbgsweep = 0
  1218  	sweep.npausesweep = 0
  1219  
  1220  	// now that gc is done, kick off finalizer thread if needed
  1221  	if !concurrentSweep {
  1222  		// give the queued finalizers, if any, a chance to run
  1223  		Gosched()
  1224  	}
  1225  }
  1226  
  1227  // gcBgMarkStartWorkers prepares background mark worker goroutines.
  1228  // These goroutines will not run until the mark phase, but they must
  1229  // be started while the work is not stopped and from a regular G
  1230  // stack. The caller must hold worldsema.
  1231  func gcBgMarkStartWorkers() {
  1232  	// Background marking is performed by per-P G's. Ensure that
  1233  	// each P has a background GC G.
  1234  	for _, p := range &allp {
  1235  		if p == nil || p.status == _Pdead {
  1236  			break
  1237  		}
  1238  		if p.gcBgMarkWorker == nil {
  1239  			go gcBgMarkWorker(p)
  1240  			notetsleepg(&work.bgMarkReady, -1)
  1241  			noteclear(&work.bgMarkReady)
  1242  		}
  1243  	}
  1244  }
  1245  
  1246  // gcBgMarkPrepare sets up state for background marking.
  1247  // Mutator assists must not yet be enabled.
  1248  func gcBgMarkPrepare() {
  1249  	// Background marking will stop when the work queues are empty
  1250  	// and there are no more workers (note that, since this is
  1251  	// concurrent, this may be a transient state, but mark
  1252  	// termination will clean it up). Between background workers
  1253  	// and assists, we don't really know how many workers there
  1254  	// will be, so we pretend to have an arbitrarily large number
  1255  	// of workers, almost all of which are "waiting". While a
  1256  	// worker is working it decrements nwait. If nproc == nwait,
  1257  	// there are no workers.
  1258  	work.nproc = ^uint32(0)
  1259  	work.nwait = ^uint32(0)
  1260  
  1261  	// Reset background mark completion points.
  1262  	work.bgMark1.done = 1
  1263  	work.bgMark2.done = 1
  1264  }
  1265  
  1266  func gcBgMarkWorker(p *p) {
  1267  	// Register this G as the background mark worker for p.
  1268  	if p.gcBgMarkWorker != nil {
  1269  		throw("P already has a background mark worker")
  1270  	}
  1271  	gp := getg()
  1272  
  1273  	mp := acquirem()
  1274  	p.gcBgMarkWorker = gp
  1275  	// After this point, the background mark worker is scheduled
  1276  	// cooperatively by gcController.findRunnable. Hence, it must
  1277  	// never be preempted, as this would put it into _Grunnable
  1278  	// and put it on a run queue. Instead, when the preempt flag
  1279  	// is set, this puts itself into _Gwaiting to be woken up by
  1280  	// gcController.findRunnable at the appropriate time.
  1281  	notewakeup(&work.bgMarkReady)
  1282  	for {
  1283  		// Go to sleep until woken by gcContoller.findRunnable.
  1284  		// We can't releasem yet since even the call to gopark
  1285  		// may be preempted.
  1286  		gopark(func(g *g, mp unsafe.Pointer) bool {
  1287  			releasem((*m)(mp))
  1288  			return true
  1289  		}, unsafe.Pointer(mp), "mark worker (idle)", traceEvGoBlock, 0)
  1290  
  1291  		// Loop until the P dies and disassociates this
  1292  		// worker. (The P may later be reused, in which case
  1293  		// it will get a new worker.)
  1294  		if p.gcBgMarkWorker != gp {
  1295  			break
  1296  		}
  1297  
  1298  		// Disable preemption so we can use the gcw. If the
  1299  		// scheduler wants to preempt us, we'll stop draining,
  1300  		// dispose the gcw, and then preempt.
  1301  		mp = acquirem()
  1302  
  1303  		if gcBlackenEnabled == 0 {
  1304  			throw("gcBgMarkWorker: blackening not enabled")
  1305  		}
  1306  
  1307  		startTime := nanotime()
  1308  
  1309  		decnwait := xadd(&work.nwait, -1)
  1310  		if decnwait == work.nproc {
  1311  			println("runtime: work.nwait=", decnwait, "work.nproc=", work.nproc)
  1312  			throw("work.nwait was > work.nproc")
  1313  		}
  1314  
  1315  		done := false
  1316  		switch p.gcMarkWorkerMode {
  1317  		default:
  1318  			throw("gcBgMarkWorker: unexpected gcMarkWorkerMode")
  1319  		case gcMarkWorkerDedicatedMode:
  1320  			gcDrain(&p.gcw, gcBgCreditSlack)
  1321  			// gcDrain did the xadd(&work.nwait +1) to
  1322  			// match the decrement above. It only returns
  1323  			// at a mark completion point.
  1324  			done = true
  1325  			if !p.gcw.empty() {
  1326  				throw("gcDrain returned with buffer")
  1327  			}
  1328  		case gcMarkWorkerFractionalMode, gcMarkWorkerIdleMode:
  1329  			gcDrainUntilPreempt(&p.gcw, gcBgCreditSlack)
  1330  
  1331  			// If we are nearing the end of mark, dispose
  1332  			// of the cache promptly. We must do this
  1333  			// before signaling that we're no longer
  1334  			// working so that other workers can't observe
  1335  			// no workers and no work while we have this
  1336  			// cached, and before we compute done.
  1337  			if gcBlackenPromptly {
  1338  				p.gcw.dispose()
  1339  			}
  1340  
  1341  			// Was this the last worker and did we run out
  1342  			// of work?
  1343  			incnwait := xadd(&work.nwait, +1)
  1344  			if incnwait > work.nproc {
  1345  				println("runtime: p.gcMarkWorkerMode=", p.gcMarkWorkerMode,
  1346  					"work.nwait=", incnwait, "work.nproc=", work.nproc)
  1347  				throw("work.nwait > work.nproc")
  1348  			}
  1349  			done = incnwait == work.nproc && work.full == 0 && work.partial == 0
  1350  		}
  1351  
  1352  		// If this worker reached a background mark completion
  1353  		// point, signal the main GC goroutine.
  1354  		if done {
  1355  			if gcBlackenPromptly {
  1356  				if work.bgMark1.done == 0 {
  1357  					throw("completing mark 2, but bgMark1.done == 0")
  1358  				}
  1359  				work.bgMark2.complete()
  1360  			} else {
  1361  				work.bgMark1.complete()
  1362  			}
  1363  		}
  1364  
  1365  		duration := nanotime() - startTime
  1366  		switch p.gcMarkWorkerMode {
  1367  		case gcMarkWorkerDedicatedMode:
  1368  			xaddint64(&gcController.dedicatedMarkTime, duration)
  1369  			xaddint64(&gcController.dedicatedMarkWorkersNeeded, 1)
  1370  		case gcMarkWorkerFractionalMode:
  1371  			xaddint64(&gcController.fractionalMarkTime, duration)
  1372  			xaddint64(&gcController.fractionalMarkWorkersNeeded, 1)
  1373  		case gcMarkWorkerIdleMode:
  1374  			xaddint64(&gcController.idleMarkTime, duration)
  1375  		}
  1376  	}
  1377  }
  1378  
  1379  // gcMarkWorkAvailable returns true if executing a mark worker
  1380  // on p is potentially useful.
  1381  func gcMarkWorkAvailable(p *p) bool {
  1382  	if !p.gcw.empty() {
  1383  		return true
  1384  	}
  1385  	if atomicload64(&work.full) != 0 || atomicload64(&work.partial) != 0 {
  1386  		return true // global work available
  1387  	}
  1388  	return false
  1389  }
  1390  
  1391  // gcFlushGCWork disposes the gcWork caches of all Ps. The world must
  1392  // be stopped.
  1393  //go:nowritebarrier
  1394  func gcFlushGCWork() {
  1395  	// Gather all cached GC work. All other Ps are stopped, so
  1396  	// it's safe to manipulate their GC work caches.
  1397  	for i := 0; i < int(gomaxprocs); i++ {
  1398  		allp[i].gcw.dispose()
  1399  	}
  1400  }
  1401  
  1402  // gcMark runs the mark (or, for concurrent GC, mark termination)
  1403  // STW is in effect at this point.
  1404  //TODO go:nowritebarrier
  1405  func gcMark(start_time int64) {
  1406  	if debug.allocfreetrace > 0 {
  1407  		tracegc()
  1408  	}
  1409  
  1410  	if gcphase != _GCmarktermination {
  1411  		throw("in gcMark expecting to see gcphase as _GCmarktermination")
  1412  	}
  1413  	work.tstart = start_time
  1414  
  1415  	gcCopySpans() // TODO(rlh): should this be hoisted and done only once? Right now it is done for normal marking and also for checkmarking.
  1416  
  1417  	// Make sure the per-P gcWork caches are empty. During mark
  1418  	// termination, these caches can still be used temporarily,
  1419  	// but must be disposed to the global lists immediately.
  1420  	gcFlushGCWork()
  1421  
  1422  	work.nwait = 0
  1423  	work.ndone = 0
  1424  	work.nproc = uint32(gcprocs())
  1425  
  1426  	if trace.enabled {
  1427  		traceGCScanStart()
  1428  	}
  1429  
  1430  	parforsetup(work.markfor, work.nproc, uint32(_RootCount+allglen), false, markroot)
  1431  	if work.nproc > 1 {
  1432  		noteclear(&work.alldone)
  1433  		helpgc(int32(work.nproc))
  1434  	}
  1435  
  1436  	gchelperstart()
  1437  	parfordo(work.markfor)
  1438  
  1439  	var gcw gcWork
  1440  	gcDrain(&gcw, -1)
  1441  	gcw.dispose()
  1442  
  1443  	if work.full != 0 {
  1444  		throw("work.full != 0")
  1445  	}
  1446  	if work.partial != 0 {
  1447  		throw("work.partial != 0")
  1448  	}
  1449  
  1450  	if work.nproc > 1 {
  1451  		notesleep(&work.alldone)
  1452  	}
  1453  
  1454  	for i := 0; i < int(gomaxprocs); i++ {
  1455  		if allp[i].gcw.wbuf != 0 {
  1456  			throw("P has cached GC work at end of mark termination")
  1457  		}
  1458  	}
  1459  
  1460  	if trace.enabled {
  1461  		traceGCScanDone()
  1462  	}
  1463  
  1464  	// TODO(austin): This doesn't have to be done during STW, as
  1465  	// long as we block the next GC cycle until this is done. Move
  1466  	// it after we start the world, but before dropping worldsema.
  1467  	// (See issue #11465.)
  1468  	freeStackSpans()
  1469  
  1470  	cachestats()
  1471  
  1472  	// Compute the reachable heap size at the beginning of the
  1473  	// cycle. This is approximately the marked heap size at the
  1474  	// end (which we know) minus the amount of marked heap that
  1475  	// was allocated after marking began (which we don't know, but
  1476  	// is approximately the amount of heap that was allocated
  1477  	// since marking began).
  1478  	allocatedDuringCycle := memstats.heap_live - work.initialHeapLive
  1479  	if work.bytesMarked >= allocatedDuringCycle {
  1480  		memstats.heap_reachable = work.bytesMarked - allocatedDuringCycle
  1481  	} else {
  1482  		// This can happen if most of the allocation during
  1483  		// the cycle never became reachable from the heap.
  1484  		// Just set the reachable heap approximation to 0 and
  1485  		// let the heapminimum kick in below.
  1486  		memstats.heap_reachable = 0
  1487  	}
  1488  
  1489  	// Trigger the next GC cycle when the allocated heap has grown
  1490  	// by triggerRatio over the reachable heap size. Assume that
  1491  	// we're in steady state, so the reachable heap size is the
  1492  	// same now as it was at the beginning of the GC cycle.
  1493  	memstats.next_gc = uint64(float64(memstats.heap_reachable) * (1 + gcController.triggerRatio))
  1494  	if memstats.next_gc < heapminimum {
  1495  		memstats.next_gc = heapminimum
  1496  	}
  1497  	if int64(memstats.next_gc) < 0 {
  1498  		print("next_gc=", memstats.next_gc, " bytesMarked=", work.bytesMarked, " heap_live=", memstats.heap_live, " initialHeapLive=", work.initialHeapLive, "\n")
  1499  		throw("next_gc underflow")
  1500  	}
  1501  
  1502  	// Update other GC heap size stats.
  1503  	memstats.heap_live = work.bytesMarked
  1504  	memstats.heap_marked = work.bytesMarked
  1505  	memstats.heap_scan = uint64(gcController.scanWork)
  1506  
  1507  	minNextGC := memstats.heap_live + sweepMinHeapDistance*uint64(gcpercent)/100
  1508  	if memstats.next_gc < minNextGC {
  1509  		// The allocated heap is already past the trigger.
  1510  		// This can happen if the triggerRatio is very low and
  1511  		// the reachable heap estimate is less than the live
  1512  		// heap size.
  1513  		//
  1514  		// Concurrent sweep happens in the heap growth from
  1515  		// heap_live to next_gc, so bump next_gc up to ensure
  1516  		// that concurrent sweep has some heap growth in which
  1517  		// to perform sweeping before we start the next GC
  1518  		// cycle.
  1519  		memstats.next_gc = minNextGC
  1520  	}
  1521  
  1522  	if trace.enabled {
  1523  		traceHeapAlloc()
  1524  		traceNextGC()
  1525  	}
  1526  }
  1527  
  1528  func gcSweep(mode int) {
  1529  	if gcphase != _GCoff {
  1530  		throw("gcSweep being done but phase is not GCoff")
  1531  	}
  1532  	gcCopySpans()
  1533  
  1534  	lock(&mheap_.lock)
  1535  	mheap_.sweepgen += 2
  1536  	mheap_.sweepdone = 0
  1537  	sweep.spanidx = 0
  1538  	unlock(&mheap_.lock)
  1539  
  1540  	if !_ConcurrentSweep || mode == gcForceBlockMode {
  1541  		// Special case synchronous sweep.
  1542  		// Record that no proportional sweeping has to happen.
  1543  		lock(&mheap_.lock)
  1544  		mheap_.sweepPagesPerByte = 0
  1545  		mheap_.pagesSwept = 0
  1546  		unlock(&mheap_.lock)
  1547  		// Sweep all spans eagerly.
  1548  		for sweepone() != ^uintptr(0) {
  1549  			sweep.npausesweep++
  1550  		}
  1551  		// Do an additional mProf_GC, because all 'free' events are now real as well.
  1552  		mProf_GC()
  1553  		mProf_GC()
  1554  		return
  1555  	}
  1556  
  1557  	// Account how much sweeping needs to be done before the next
  1558  	// GC cycle and set up proportional sweep statistics.
  1559  	var pagesToSweep uintptr
  1560  	for _, s := range work.spans {
  1561  		if s.state == mSpanInUse {
  1562  			pagesToSweep += s.npages
  1563  		}
  1564  	}
  1565  	heapDistance := int64(memstats.next_gc) - int64(memstats.heap_live)
  1566  	// Add a little margin so rounding errors and concurrent
  1567  	// sweep are less likely to leave pages unswept when GC starts.
  1568  	heapDistance -= 1024 * 1024
  1569  	if heapDistance < _PageSize {
  1570  		// Avoid setting the sweep ratio extremely high
  1571  		heapDistance = _PageSize
  1572  	}
  1573  	lock(&mheap_.lock)
  1574  	mheap_.sweepPagesPerByte = float64(pagesToSweep) / float64(heapDistance)
  1575  	mheap_.pagesSwept = 0
  1576  	mheap_.spanBytesAlloc = 0
  1577  	unlock(&mheap_.lock)
  1578  
  1579  	// Background sweep.
  1580  	lock(&sweep.lock)
  1581  	if sweep.parked {
  1582  		sweep.parked = false
  1583  		ready(sweep.g, 0)
  1584  	}
  1585  	unlock(&sweep.lock)
  1586  	mProf_GC()
  1587  }
  1588  
  1589  func gcCopySpans() {
  1590  	// Cache runtime.mheap_.allspans in work.spans to avoid conflicts with
  1591  	// resizing/freeing allspans.
  1592  	// New spans can be created while GC progresses, but they are not garbage for
  1593  	// this round:
  1594  	//  - new stack spans can be created even while the world is stopped.
  1595  	//  - new malloc spans can be created during the concurrent sweep
  1596  	// Even if this is stop-the-world, a concurrent exitsyscall can allocate a stack from heap.
  1597  	lock(&mheap_.lock)
  1598  	// Free the old cached mark array if necessary.
  1599  	if work.spans != nil && &work.spans[0] != &h_allspans[0] {
  1600  		sysFree(unsafe.Pointer(&work.spans[0]), uintptr(len(work.spans))*unsafe.Sizeof(work.spans[0]), &memstats.other_sys)
  1601  	}
  1602  	// Cache the current array for sweeping.
  1603  	mheap_.gcspans = mheap_.allspans
  1604  	work.spans = h_allspans
  1605  	unlock(&mheap_.lock)
  1606  }
  1607  
  1608  // gcResetGState resets the GC state of all G's and returns the length
  1609  // of allgs.
  1610  func gcResetGState() (numgs int) {
  1611  	// This may be called during a concurrent phase, so make sure
  1612  	// allgs doesn't change.
  1613  	lock(&allglock)
  1614  	for _, gp := range allgs {
  1615  		gp.gcscandone = false  // set to true in gcphasework
  1616  		gp.gcscanvalid = false // stack has not been scanned
  1617  		gp.gcalloc = 0
  1618  		gp.gcscanwork = 0
  1619  	}
  1620  	numgs = len(allgs)
  1621  	unlock(&allglock)
  1622  	return
  1623  }
  1624  
  1625  // gcResetMarkState resets state prior to marking (concurrent or STW).
  1626  //
  1627  // TODO(austin): Merge with gcResetGState. See issue #11427.
  1628  func gcResetMarkState() {
  1629  	work.bytesMarked = 0
  1630  	work.initialHeapLive = memstats.heap_live
  1631  }
  1632  
  1633  // Hooks for other packages
  1634  
  1635  var poolcleanup func()
  1636  
  1637  //go:linkname sync_runtime_registerPoolCleanup sync.runtime_registerPoolCleanup
  1638  func sync_runtime_registerPoolCleanup(f func()) {
  1639  	poolcleanup = f
  1640  }
  1641  
  1642  func clearpools() {
  1643  	// clear sync.Pools
  1644  	if poolcleanup != nil {
  1645  		poolcleanup()
  1646  	}
  1647  
  1648  	// Clear central sudog cache.
  1649  	// Leave per-P caches alone, they have strictly bounded size.
  1650  	// Disconnect cached list before dropping it on the floor,
  1651  	// so that a dangling ref to one entry does not pin all of them.
  1652  	lock(&sched.sudoglock)
  1653  	var sg, sgnext *sudog
  1654  	for sg = sched.sudogcache; sg != nil; sg = sgnext {
  1655  		sgnext = sg.next
  1656  		sg.next = nil
  1657  	}
  1658  	sched.sudogcache = nil
  1659  	unlock(&sched.sudoglock)
  1660  
  1661  	// Clear central defer pools.
  1662  	// Leave per-P pools alone, they have strictly bounded size.
  1663  	lock(&sched.deferlock)
  1664  	for i := range sched.deferpool {
  1665  		// disconnect cached list before dropping it on the floor,
  1666  		// so that a dangling ref to one entry does not pin all of them.
  1667  		var d, dlink *_defer
  1668  		for d = sched.deferpool[i]; d != nil; d = dlink {
  1669  			dlink = d.link
  1670  			d.link = nil
  1671  		}
  1672  		sched.deferpool[i] = nil
  1673  	}
  1674  	unlock(&sched.deferlock)
  1675  
  1676  	for _, p := range &allp {
  1677  		if p == nil {
  1678  			break
  1679  		}
  1680  		// clear tinyalloc pool
  1681  		if c := p.mcache; c != nil {
  1682  			c.tiny = nil
  1683  			c.tinyoffset = 0
  1684  		}
  1685  	}
  1686  }
  1687  
  1688  // Timing
  1689  
  1690  //go:nowritebarrier
  1691  func gchelper() {
  1692  	_g_ := getg()
  1693  	_g_.m.traceback = 2
  1694  	gchelperstart()
  1695  
  1696  	if trace.enabled {
  1697  		traceGCScanStart()
  1698  	}
  1699  
  1700  	// parallel mark for over GC roots
  1701  	parfordo(work.markfor)
  1702  	if gcphase != _GCscan {
  1703  		var gcw gcWork
  1704  		gcDrain(&gcw, -1) // blocks in getfull
  1705  		gcw.dispose()
  1706  	}
  1707  
  1708  	if trace.enabled {
  1709  		traceGCScanDone()
  1710  	}
  1711  
  1712  	nproc := work.nproc // work.nproc can change right after we increment work.ndone
  1713  	if xadd(&work.ndone, +1) == nproc-1 {
  1714  		notewakeup(&work.alldone)
  1715  	}
  1716  	_g_.m.traceback = 0
  1717  }
  1718  
  1719  func gchelperstart() {
  1720  	_g_ := getg()
  1721  
  1722  	if _g_.m.helpgc < 0 || _g_.m.helpgc >= _MaxGcproc {
  1723  		throw("gchelperstart: bad m->helpgc")
  1724  	}
  1725  	if _g_ != _g_.m.g0 {
  1726  		throw("gchelper not running on g0 stack")
  1727  	}
  1728  }
  1729  
  1730  // itoaDiv formats val/(10**dec) into buf.
  1731  func itoaDiv(buf []byte, val uint64, dec int) []byte {
  1732  	i := len(buf) - 1
  1733  	idec := i - dec
  1734  	for val >= 10 || i >= idec {
  1735  		buf[i] = byte(val%10 + '0')
  1736  		i--
  1737  		if i == idec {
  1738  			buf[i] = '.'
  1739  			i--
  1740  		}
  1741  		val /= 10
  1742  	}
  1743  	buf[i] = byte(val + '0')
  1744  	return buf[i:]
  1745  }
  1746  
  1747  // fmtNSAsMS nicely formats ns nanoseconds as milliseconds.
  1748  func fmtNSAsMS(buf []byte, ns uint64) []byte {
  1749  	if ns >= 10e6 {
  1750  		// Format as whole milliseconds.
  1751  		return itoaDiv(buf, ns/1e6, 0)
  1752  	}
  1753  	// Format two digits of precision, with at most three decimal places.
  1754  	x := ns / 1e3
  1755  	if x == 0 {
  1756  		buf[0] = '0'
  1757  		return buf[:1]
  1758  	}
  1759  	dec := 3
  1760  	for x >= 100 {
  1761  		x /= 10
  1762  		dec--
  1763  	}
  1764  	return itoaDiv(buf, x, dec)
  1765  }