github.phpd.cn/hashicorp/packer@v1.3.2/builder/azure/pkcs12/rc2/rc2.go (about) 1 // Copyright 2015 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Package rc2 implements the RC2 cipher 6 /* 7 https://www.ietf.org/rfc/rfc2268.txt 8 http://people.csail.mit.edu/rivest/pubs/KRRR98.pdf 9 10 This code is licensed under the MIT license. 11 */ 12 package rc2 13 14 import ( 15 "crypto/cipher" 16 "encoding/binary" 17 ) 18 19 // The rc2 block size in bytes 20 const BlockSize = 8 21 22 type rc2Cipher struct { 23 k [64]uint16 24 } 25 26 // New returns a new rc2 cipher with the given key and effective key length t1 27 func New(key []byte, t1 int) (cipher.Block, error) { 28 // TODO(dgryski): error checking for key length 29 return &rc2Cipher{ 30 k: expandKey(key, t1), 31 }, nil 32 } 33 34 func (*rc2Cipher) BlockSize() int { return BlockSize } 35 36 var piTable = [256]byte{ 37 0xd9, 0x78, 0xf9, 0xc4, 0x19, 0xdd, 0xb5, 0xed, 0x28, 0xe9, 0xfd, 0x79, 0x4a, 0xa0, 0xd8, 0x9d, 38 0xc6, 0x7e, 0x37, 0x83, 0x2b, 0x76, 0x53, 0x8e, 0x62, 0x4c, 0x64, 0x88, 0x44, 0x8b, 0xfb, 0xa2, 39 0x17, 0x9a, 0x59, 0xf5, 0x87, 0xb3, 0x4f, 0x13, 0x61, 0x45, 0x6d, 0x8d, 0x09, 0x81, 0x7d, 0x32, 40 0xbd, 0x8f, 0x40, 0xeb, 0x86, 0xb7, 0x7b, 0x0b, 0xf0, 0x95, 0x21, 0x22, 0x5c, 0x6b, 0x4e, 0x82, 41 0x54, 0xd6, 0x65, 0x93, 0xce, 0x60, 0xb2, 0x1c, 0x73, 0x56, 0xc0, 0x14, 0xa7, 0x8c, 0xf1, 0xdc, 42 0x12, 0x75, 0xca, 0x1f, 0x3b, 0xbe, 0xe4, 0xd1, 0x42, 0x3d, 0xd4, 0x30, 0xa3, 0x3c, 0xb6, 0x26, 43 0x6f, 0xbf, 0x0e, 0xda, 0x46, 0x69, 0x07, 0x57, 0x27, 0xf2, 0x1d, 0x9b, 0xbc, 0x94, 0x43, 0x03, 44 0xf8, 0x11, 0xc7, 0xf6, 0x90, 0xef, 0x3e, 0xe7, 0x06, 0xc3, 0xd5, 0x2f, 0xc8, 0x66, 0x1e, 0xd7, 45 0x08, 0xe8, 0xea, 0xde, 0x80, 0x52, 0xee, 0xf7, 0x84, 0xaa, 0x72, 0xac, 0x35, 0x4d, 0x6a, 0x2a, 46 0x96, 0x1a, 0xd2, 0x71, 0x5a, 0x15, 0x49, 0x74, 0x4b, 0x9f, 0xd0, 0x5e, 0x04, 0x18, 0xa4, 0xec, 47 0xc2, 0xe0, 0x41, 0x6e, 0x0f, 0x51, 0xcb, 0xcc, 0x24, 0x91, 0xaf, 0x50, 0xa1, 0xf4, 0x70, 0x39, 48 0x99, 0x7c, 0x3a, 0x85, 0x23, 0xb8, 0xb4, 0x7a, 0xfc, 0x02, 0x36, 0x5b, 0x25, 0x55, 0x97, 0x31, 49 0x2d, 0x5d, 0xfa, 0x98, 0xe3, 0x8a, 0x92, 0xae, 0x05, 0xdf, 0x29, 0x10, 0x67, 0x6c, 0xba, 0xc9, 50 0xd3, 0x00, 0xe6, 0xcf, 0xe1, 0x9e, 0xa8, 0x2c, 0x63, 0x16, 0x01, 0x3f, 0x58, 0xe2, 0x89, 0xa9, 51 0x0d, 0x38, 0x34, 0x1b, 0xab, 0x33, 0xff, 0xb0, 0xbb, 0x48, 0x0c, 0x5f, 0xb9, 0xb1, 0xcd, 0x2e, 52 0xc5, 0xf3, 0xdb, 0x47, 0xe5, 0xa5, 0x9c, 0x77, 0x0a, 0xa6, 0x20, 0x68, 0xfe, 0x7f, 0xc1, 0xad, 53 } 54 55 func expandKey(key []byte, t1 int) [64]uint16 { 56 57 l := make([]byte, 128) 58 copy(l, key) 59 60 var t = len(key) 61 var t8 = (t1 + 7) / 8 62 var tm = byte(255 % uint(1<<(8+uint(t1)-8*uint(t8)))) 63 64 for i := len(key); i < 128; i++ { 65 l[i] = piTable[l[i-1]+l[uint8(i-t)]] 66 } 67 68 l[128-t8] = piTable[l[128-t8]&tm] 69 70 for i := 127 - t8; i >= 0; i-- { 71 l[i] = piTable[l[i+1]^l[i+t8]] 72 } 73 74 var k [64]uint16 75 76 for i := range k { 77 k[i] = uint16(l[2*i]) + uint16(l[2*i+1])*256 78 } 79 80 return k 81 } 82 83 func rotl16(x uint16, b uint) uint16 { 84 return (x >> (16 - b)) | (x << b) 85 } 86 87 func (c *rc2Cipher) Encrypt(dst, src []byte) { 88 89 r0 := binary.LittleEndian.Uint16(src[0:]) 90 r1 := binary.LittleEndian.Uint16(src[2:]) 91 r2 := binary.LittleEndian.Uint16(src[4:]) 92 r3 := binary.LittleEndian.Uint16(src[6:]) 93 94 var j int 95 96 for j <= 16 { 97 // mix r0 98 r0 = r0 + c.k[j] + (r3 & r2) + ((^r3) & r1) 99 r0 = rotl16(r0, 1) 100 j++ 101 102 // mix r1 103 r1 = r1 + c.k[j] + (r0 & r3) + ((^r0) & r2) 104 r1 = rotl16(r1, 2) 105 j++ 106 107 // mix r2 108 r2 = r2 + c.k[j] + (r1 & r0) + ((^r1) & r3) 109 r2 = rotl16(r2, 3) 110 j++ 111 112 // mix r3 113 r3 = r3 + c.k[j] + (r2 & r1) + ((^r2) & r0) 114 r3 = rotl16(r3, 5) 115 j++ 116 117 } 118 119 r0 = r0 + c.k[r3&63] 120 r1 = r1 + c.k[r0&63] 121 r2 = r2 + c.k[r1&63] 122 r3 = r3 + c.k[r2&63] 123 124 for j <= 40 { 125 126 // mix r0 127 r0 = r0 + c.k[j] + (r3 & r2) + ((^r3) & r1) 128 r0 = rotl16(r0, 1) 129 j++ 130 131 // mix r1 132 r1 = r1 + c.k[j] + (r0 & r3) + ((^r0) & r2) 133 r1 = rotl16(r1, 2) 134 j++ 135 136 // mix r2 137 r2 = r2 + c.k[j] + (r1 & r0) + ((^r1) & r3) 138 r2 = rotl16(r2, 3) 139 j++ 140 141 // mix r3 142 r3 = r3 + c.k[j] + (r2 & r1) + ((^r2) & r0) 143 r3 = rotl16(r3, 5) 144 j++ 145 146 } 147 148 r0 = r0 + c.k[r3&63] 149 r1 = r1 + c.k[r0&63] 150 r2 = r2 + c.k[r1&63] 151 r3 = r3 + c.k[r2&63] 152 153 for j <= 60 { 154 155 // mix r0 156 r0 = r0 + c.k[j] + (r3 & r2) + ((^r3) & r1) 157 r0 = rotl16(r0, 1) 158 j++ 159 160 // mix r1 161 r1 = r1 + c.k[j] + (r0 & r3) + ((^r0) & r2) 162 r1 = rotl16(r1, 2) 163 j++ 164 165 // mix r2 166 r2 = r2 + c.k[j] + (r1 & r0) + ((^r1) & r3) 167 r2 = rotl16(r2, 3) 168 j++ 169 170 // mix r3 171 r3 = r3 + c.k[j] + (r2 & r1) + ((^r2) & r0) 172 r3 = rotl16(r3, 5) 173 j++ 174 } 175 176 binary.LittleEndian.PutUint16(dst[0:], r0) 177 binary.LittleEndian.PutUint16(dst[2:], r1) 178 binary.LittleEndian.PutUint16(dst[4:], r2) 179 binary.LittleEndian.PutUint16(dst[6:], r3) 180 } 181 182 func (c *rc2Cipher) Decrypt(dst, src []byte) { 183 184 r0 := binary.LittleEndian.Uint16(src[0:]) 185 r1 := binary.LittleEndian.Uint16(src[2:]) 186 r2 := binary.LittleEndian.Uint16(src[4:]) 187 r3 := binary.LittleEndian.Uint16(src[6:]) 188 189 j := 63 190 191 for j >= 44 { 192 // unmix r3 193 r3 = rotl16(r3, 16-5) 194 r3 = r3 - c.k[j] - (r2 & r1) - ((^r2) & r0) 195 j-- 196 197 // unmix r2 198 r2 = rotl16(r2, 16-3) 199 r2 = r2 - c.k[j] - (r1 & r0) - ((^r1) & r3) 200 j-- 201 202 // unmix r1 203 r1 = rotl16(r1, 16-2) 204 r1 = r1 - c.k[j] - (r0 & r3) - ((^r0) & r2) 205 j-- 206 207 // unmix r0 208 r0 = rotl16(r0, 16-1) 209 r0 = r0 - c.k[j] - (r3 & r2) - ((^r3) & r1) 210 j-- 211 } 212 213 r3 = r3 - c.k[r2&63] 214 r2 = r2 - c.k[r1&63] 215 r1 = r1 - c.k[r0&63] 216 r0 = r0 - c.k[r3&63] 217 218 for j >= 20 { 219 // unmix r3 220 r3 = rotl16(r3, 16-5) 221 r3 = r3 - c.k[j] - (r2 & r1) - ((^r2) & r0) 222 j-- 223 224 // unmix r2 225 r2 = rotl16(r2, 16-3) 226 r2 = r2 - c.k[j] - (r1 & r0) - ((^r1) & r3) 227 j-- 228 229 // unmix r1 230 r1 = rotl16(r1, 16-2) 231 r1 = r1 - c.k[j] - (r0 & r3) - ((^r0) & r2) 232 j-- 233 234 // unmix r0 235 r0 = rotl16(r0, 16-1) 236 r0 = r0 - c.k[j] - (r3 & r2) - ((^r3) & r1) 237 j-- 238 239 } 240 241 r3 = r3 - c.k[r2&63] 242 r2 = r2 - c.k[r1&63] 243 r1 = r1 - c.k[r0&63] 244 r0 = r0 - c.k[r3&63] 245 246 for j >= 0 { 247 248 // unmix r3 249 r3 = rotl16(r3, 16-5) 250 r3 = r3 - c.k[j] - (r2 & r1) - ((^r2) & r0) 251 j-- 252 253 // unmix r2 254 r2 = rotl16(r2, 16-3) 255 r2 = r2 - c.k[j] - (r1 & r0) - ((^r1) & r3) 256 j-- 257 258 // unmix r1 259 r1 = rotl16(r1, 16-2) 260 r1 = r1 - c.k[j] - (r0 & r3) - ((^r0) & r2) 261 j-- 262 263 // unmix r0 264 r0 = rotl16(r0, 16-1) 265 r0 = r0 - c.k[j] - (r3 & r2) - ((^r3) & r1) 266 j-- 267 268 } 269 270 binary.LittleEndian.PutUint16(dst[0:], r0) 271 binary.LittleEndian.PutUint16(dst[2:], r1) 272 binary.LittleEndian.PutUint16(dst[4:], r2) 273 binary.LittleEndian.PutUint16(dst[6:], r3) 274 }