gitlab.com/CoiaPrant/sqlite3@v1.19.1/testdata/tcl/e_select.test (about)

     1  # 2010 July 16
     2  #
     3  # The author disclaims copyright to this source code.  In place of
     4  # a legal notice, here is a blessing:
     5  #
     6  #    May you do good and not evil.
     7  #    May you find forgiveness for yourself and forgive others.
     8  #    May you share freely, never taking more than you give.
     9  #
    10  #***********************************************************************
    11  #
    12  # This file implements tests to verify that the "testable statements" in 
    13  # the lang_select.html document are correct.
    14  #
    15  
    16  set testdir [file dirname $argv0]
    17  source $testdir/tester.tcl
    18  
    19  ifcapable !compound {
    20    finish_test
    21    return
    22  }
    23  
    24  do_execsql_test e_select-1.0 {
    25    CREATE TABLE t1(a, b);
    26    INSERT INTO t1 VALUES('a', 'one');
    27    INSERT INTO t1 VALUES('b', 'two');
    28    INSERT INTO t1 VALUES('c', 'three');
    29  
    30    CREATE TABLE t2(a, b);
    31    INSERT INTO t2 VALUES('a', 'I');
    32    INSERT INTO t2 VALUES('b', 'II');
    33    INSERT INTO t2 VALUES('c', 'III');
    34  
    35    CREATE TABLE t3(a, c);
    36    INSERT INTO t3 VALUES('a', 1);
    37    INSERT INTO t3 VALUES('b', 2);
    38  
    39    CREATE TABLE t4(a, c);
    40    INSERT INTO t4 VALUES('a', NULL);
    41    INSERT INTO t4 VALUES('b', 2);
    42  } {}
    43  set t1_cross_t2 [list                \
    44     a one   a I      a one   b II     \
    45     a one   c III    b two   a I      \
    46     b two   b II     b two   c III    \
    47     c three a I      c three b II     \
    48     c three c III                     \
    49  ]
    50  set t1_cross_t1 [list                  \
    51     a one   a one      a one   b two    \
    52     a one   c three    b two   a one    \
    53     b two   b two      b two   c three  \
    54     c three a one      c three b two    \
    55     c three c three                     \
    56  ]
    57  
    58  
    59  # This proc is a specialized version of [do_execsql_test].
    60  #
    61  # The second argument to this proc must be a SELECT statement that 
    62  # features a cross join of some time. Instead of the usual ",", 
    63  # "CROSS JOIN" or "INNER JOIN" join-op, the string %JOIN% must be 
    64  # substituted.
    65  #
    66  # This test runs the SELECT three times - once with:
    67  #
    68  #   * s/%JOIN%/,/
    69  #   * s/%JOIN%/JOIN/
    70  #   * s/%JOIN%/INNER JOIN/
    71  #   * s/%JOIN%/CROSS JOIN/
    72  #
    73  # and checks that each time the results of the SELECT are $res.
    74  #
    75  proc do_join_test {tn select res} {
    76    foreach {tn2 joinop} [list    1 ,    2 "CROSS JOIN"    3 "INNER JOIN"] {
    77      set S [string map [list %JOIN% $joinop] $select]
    78      uplevel do_execsql_test $tn.$tn2 [list $S] [list $res]
    79    }
    80  }
    81  
    82  #-------------------------------------------------------------------------
    83  # The following tests check that all paths on the syntax diagrams on
    84  # the lang_select.html page may be taken.
    85  #
    86  # -- syntax diagram join-constraint
    87  #
    88  do_join_test e_select-0.1.1 {
    89    SELECT count(*) FROM t1 %JOIN% t2 ON (t1.a=t2.a)
    90  } {3}
    91  do_join_test e_select-0.1.2 {
    92    SELECT count(*) FROM t1 %JOIN% t2 USING (a)
    93  } {3}
    94  do_join_test e_select-0.1.3 {
    95    SELECT count(*) FROM t1 %JOIN% t2
    96  } {9}
    97  do_catchsql_test e_select-0.1.4 {
    98    SELECT count(*) FROM t1, t2 ON (t1.a=t2.a) USING (a)
    99  } {1 {near "USING": syntax error}}
   100  do_catchsql_test e_select-0.1.5 {
   101    SELECT count(*) FROM t1, t2 USING (a) ON (t1.a=t2.a)
   102  } {1 {near "ON": syntax error}}
   103  
   104  # -- syntax diagram select-core
   105  #
   106  #   0: SELECT ...
   107  #   1: SELECT DISTINCT ...
   108  #   2: SELECT ALL ...
   109  #
   110  #   0: No FROM clause
   111  #   1: Has FROM clause
   112  #
   113  #   0: No WHERE clause
   114  #   1: Has WHERE clause
   115  #
   116  #   0: No GROUP BY clause
   117  #   1: Has GROUP BY clause
   118  #   2: Has GROUP BY and HAVING clauses
   119  #
   120  do_select_tests e_select-0.2 {
   121    0000.1  "SELECT 1, 2, 3 " {1 2 3}
   122    1000.1  "SELECT DISTINCT 1, 2, 3 " {1 2 3}
   123    2000.1  "SELECT ALL 1, 2, 3 " {1 2 3}
   124    
   125    0100.1  "SELECT a, b, a||b FROM t1 " {
   126      a one aone b two btwo c three cthree
   127    }
   128    1100.1  "SELECT DISTINCT a, b, a||b FROM t1 " {
   129      a one aone b two btwo c three cthree
   130    }
   131    1200.1  "SELECT ALL a, b, a||b FROM t1 " {
   132      a one aone b two btwo c three cthree
   133    }
   134  
   135    0010.1  "SELECT 1, 2, 3 WHERE 1 " {1 2 3}
   136    0010.2  "SELECT 1, 2, 3 WHERE 0 " {}
   137    0010.3  "SELECT 1, 2, 3 WHERE NULL " {}
   138  
   139    1010.1  "SELECT DISTINCT 1, 2, 3 WHERE 1 " {1 2 3}
   140  
   141    2010.1  "SELECT ALL 1, 2, 3 WHERE 1 " {1 2 3}
   142  
   143    0110.1  "SELECT a, b, a||b FROM t1 WHERE a!='x' " {
   144      a one aone b two btwo c three cthree
   145    }
   146    0110.2  "SELECT a, b, a||b FROM t1 WHERE a=='x'" {}
   147  
   148    1110.1  "SELECT DISTINCT a, b, a||b FROM t1 WHERE a!='x' " {
   149      a one aone b two btwo c three cthree
   150    }
   151  
   152    2110.0  "SELECT ALL a, b, a||b FROM t1 WHERE a=='x'" {}
   153  
   154    0001.1  "SELECT 1, 2, 3 GROUP BY 2" {1 2 3}
   155    0002.1  "SELECT 1, 2, 3 GROUP BY 2 HAVING count(*)=1" {1 2 3}
   156    0002.2  "SELECT 1, 2, 3 GROUP BY 2 HAVING count(*)>1" {}
   157  
   158    1001.1  "SELECT DISTINCT 1, 2, 3 GROUP BY 2" {1 2 3}
   159    1002.1  "SELECT DISTINCT 1, 2, 3 GROUP BY 2 HAVING count(*)=1" {1 2 3}
   160    1002.2  "SELECT DISTINCT 1, 2, 3 GROUP BY 2 HAVING count(*)>1" {}
   161  
   162    2001.1  "SELECT ALL 1, 2, 3 GROUP BY 2" {1 2 3}
   163    2002.1  "SELECT ALL 1, 2, 3 GROUP BY 2 HAVING count(*)=1" {1 2 3}
   164    2002.2  "SELECT ALL 1, 2, 3 GROUP BY 2 HAVING count(*)>1" {}
   165  
   166    0101.1  "SELECT count(*), max(a) FROM t1 GROUP BY b" {1 a 1 c 1 b}
   167    0102.1  "SELECT count(*), max(a) FROM t1 GROUP BY b HAVING count(*)=1" {
   168      1 a 1 c 1 b
   169    }
   170    0102.2  "SELECT count(*), max(a) FROM t1 GROUP BY b HAVING count(*)=2" {}
   171  
   172    1101.1  "SELECT DISTINCT count(*), max(a) FROM t1 GROUP BY b" {1 a 1 c 1 b}
   173    1102.1  "SELECT DISTINCT count(*), max(a) FROM t1 
   174             GROUP BY b HAVING count(*)=1" {
   175      1 a 1 c 1 b
   176    }
   177    1102.2  "SELECT DISTINCT count(*), max(a) FROM t1 
   178             GROUP BY b HAVING count(*)=2" {}
   179  
   180    2101.1  "SELECT ALL count(*), max(a) FROM t1 GROUP BY b" {1 a 1 c 1 b}
   181    2102.1  "SELECT ALL count(*), max(a) FROM t1 
   182             GROUP BY b HAVING count(*)=1" {
   183      1 a 1 c 1 b
   184    }
   185    2102.2  "SELECT ALL count(*), max(a) FROM t1 
   186             GROUP BY b HAVING count(*)=2" {}
   187  
   188    0011.1  "SELECT 1, 2, 3 WHERE 1 GROUP BY 2" {1 2 3}
   189    0012.1  "SELECT 1, 2, 3 WHERE 0 GROUP BY 2 HAVING count(*)=1" {}
   190    0012.2  "SELECT 1, 2, 3 WHERE 0 GROUP BY 2 HAVING count(*)>1" {}
   191  
   192    1011.1  "SELECT DISTINCT 1, 2, 3 WHERE 0 GROUP BY 2" {}
   193    1012.1  "SELECT DISTINCT 1, 2, 3 WHERE 1 GROUP BY 2 HAVING count(*)=1" 
   194            {1 2 3}
   195    1012.2  "SELECT DISTINCT 1, 2, 3 WHERE NULL GROUP BY 2 HAVING count(*)>1" {}
   196  
   197    2011.1  "SELECT ALL 1, 2, 3 WHERE 1 GROUP BY 2" {1 2 3}
   198    2012.1  "SELECT ALL 1, 2, 3 WHERE 0 GROUP BY 2 HAVING count(*)=1" {}
   199    2012.2  "SELECT ALL 1, 2, 3 WHERE 'abc' GROUP BY 2 HAVING count(*)>1" {}
   200  
   201    0111.1  "SELECT count(*), max(a) FROM t1 WHERE a='a' GROUP BY b" {1 a}
   202    0112.1  "SELECT count(*), max(a) FROM t1 
   203             WHERE a='c' GROUP BY b HAVING count(*)=1" {1 c}
   204    0112.2  "SELECT count(*), max(a) FROM t1 
   205             WHERE 0 GROUP BY b HAVING count(*)=2" {}
   206    1111.1  "SELECT DISTINCT count(*), max(a) FROM t1 WHERE a<'c' GROUP BY b" 
   207            {1 a 1 b}
   208    1112.1  "SELECT DISTINCT count(*), max(a) FROM t1 WHERE a>'a'
   209             GROUP BY b HAVING count(*)=1" {
   210      1 c 1 b
   211    }
   212    1112.2  "SELECT DISTINCT count(*), max(a) FROM t1 WHERE 0
   213             GROUP BY b HAVING count(*)=2" {}
   214  
   215    2111.1  "SELECT ALL count(*), max(a) FROM t1 WHERE b>'one' GROUP BY b" 
   216            {1 c 1 b}
   217    2112.1  "SELECT ALL count(*), max(a) FROM t1 WHERE a!='b'
   218             GROUP BY b HAVING count(*)=1" {
   219      1 a 1 c
   220    }
   221    2112.2  "SELECT ALL count(*), max(a) FROM t1 
   222             WHERE 0 GROUP BY b HAVING count(*)=2" {}
   223  }
   224  
   225  
   226  # -- syntax diagram result-column
   227  #
   228  do_select_tests e_select-0.3 {
   229    1  "SELECT * FROM t1" {a one b two c three}
   230    2  "SELECT t1.* FROM t1" {a one b two c three}
   231    3  "SELECT 'x'||a||'x' FROM t1" {xax xbx xcx}
   232    4  "SELECT 'x'||a||'x' alias FROM t1" {xax xbx xcx}
   233    5  "SELECT 'x'||a||'x' AS alias FROM t1" {xax xbx xcx}
   234  }
   235  
   236  # -- syntax diagram join-source
   237  #
   238  # -- syntax diagram join-op
   239  #
   240  do_select_tests e_select-0.4 {
   241    1  "SELECT t1.rowid FROM t1" {1 2 3}
   242    2  "SELECT t1.rowid FROM t1,t2" {1 1 1 2 2 2 3 3 3}
   243    3  "SELECT t1.rowid FROM t1,t2,t3" {1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3}
   244  
   245    4  "SELECT t1.rowid FROM t1" {1 2 3}
   246    5  "SELECT t1.rowid FROM t1 JOIN t2" {1 1 1 2 2 2 3 3 3}
   247    6  "SELECT t1.rowid FROM t1 JOIN t2 JOIN t3" 
   248       {1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3}
   249  
   250    7  "SELECT t1.rowid FROM t1 NATURAL JOIN t3" {1 2}
   251    8  "SELECT t1.rowid FROM t1 NATURAL LEFT OUTER JOIN t3" {1 2 3}
   252    9  "SELECT t1.rowid FROM t1 NATURAL LEFT JOIN t3" {1 2 3}
   253    10 "SELECT t1.rowid FROM t1 NATURAL INNER JOIN t3" {1 2}
   254    11 "SELECT t1.rowid FROM t1 NATURAL CROSS JOIN t3" {1 2}
   255  
   256    12 "SELECT t1.rowid FROM t1 JOIN t3" {1 1 2 2 3 3}
   257    13 "SELECT t1.rowid FROM t1 LEFT OUTER JOIN t3" {1 1 2 2 3 3}
   258    14 "SELECT t1.rowid FROM t1 LEFT JOIN t3" {1 1 2 2 3 3}
   259    15 "SELECT t1.rowid FROM t1 INNER JOIN t3" {1 1 2 2 3 3}
   260    16 "SELECT t1.rowid FROM t1 CROSS JOIN t3" {1 1 2 2 3 3}
   261  }
   262  
   263  # -- syntax diagram compound-operator
   264  #
   265  do_select_tests e_select-0.5 {
   266    1  "SELECT rowid FROM t1 UNION ALL SELECT rowid+2 FROM t4" {1 2 3 3 4}
   267    2  "SELECT rowid FROM t1 UNION     SELECT rowid+2 FROM t4" {1 2 3 4}
   268    3  "SELECT rowid FROM t1 INTERSECT SELECT rowid+2 FROM t4" {3}
   269    4  "SELECT rowid FROM t1 EXCEPT    SELECT rowid+2 FROM t4" {1 2}
   270  }
   271  
   272  # -- syntax diagram ordering-term
   273  #
   274  do_select_tests e_select-0.6 {
   275    1  "SELECT b||a FROM t1 ORDER BY b||a"                  {onea threec twob}
   276    2  "SELECT b||a FROM t1 ORDER BY (b||a) COLLATE nocase" {onea threec twob}
   277    3  "SELECT b||a FROM t1 ORDER BY (b||a) ASC"            {onea threec twob}
   278    4  "SELECT b||a FROM t1 ORDER BY (b||a) DESC"           {twob threec onea}
   279  }
   280  
   281  # -- syntax diagram select-stmt
   282  #
   283  do_select_tests e_select-0.7 {
   284    1  "SELECT * FROM t1" {a one b two c three}
   285    2  "SELECT * FROM t1 ORDER BY b" {a one c three b two}
   286    3  "SELECT * FROM t1 ORDER BY b, a" {a one c three b two}
   287  
   288    4  "SELECT * FROM t1 LIMIT 10" {a one b two c three}
   289    5  "SELECT * FROM t1 LIMIT 10 OFFSET 5" {}
   290    6  "SELECT * FROM t1 LIMIT 10, 5" {}
   291  
   292    7  "SELECT * FROM t1 ORDER BY a LIMIT 10" {a one b two c three}
   293    8  "SELECT * FROM t1 ORDER BY b LIMIT 10 OFFSET 5" {}
   294    9  "SELECT * FROM t1 ORDER BY a,b LIMIT 10, 5" {}
   295  
   296    10  "SELECT * FROM t1 UNION SELECT b, a FROM t1" 
   297       {a one b two c three one a three c two b}
   298    11  "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY b" 
   299       {one a two b three c a one c three b two}
   300    12  "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY b, a" 
   301       {one a two b three c a one c three b two}
   302    13  "SELECT * FROM t1 UNION SELECT b, a FROM t1 LIMIT 10" 
   303       {a one b two c three one a three c two b}
   304    14  "SELECT * FROM t1 UNION SELECT b, a FROM t1 LIMIT 10 OFFSET 5" 
   305       {two b}
   306    15  "SELECT * FROM t1 UNION SELECT b, a FROM t1 LIMIT 10, 5" 
   307       {}
   308    16  "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY a LIMIT 10" 
   309       {a one b two c three one a three c two b}
   310    17  "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY b LIMIT 10 OFFSET 5" 
   311       {b two}
   312    18  "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY a,b LIMIT 10, 5" 
   313       {}
   314  }
   315  
   316  #-------------------------------------------------------------------------
   317  # The following tests focus on FROM clause (join) processing.
   318  #
   319  
   320  # EVIDENCE-OF: R-16074-54196 If the FROM clause is omitted from a simple
   321  # SELECT statement, then the input data is implicitly a single row zero
   322  # columns wide
   323  #
   324  do_select_tests e_select-1.1 {
   325    1 "SELECT 'abc'"            {abc}
   326    2 "SELECT 'abc' WHERE NULL" {}
   327    3 "SELECT NULL"             {{}}
   328    4 "SELECT count(*)"         {1}
   329    5 "SELECT count(*) WHERE 0" {0}
   330    6 "SELECT count(*) WHERE 1" {1}
   331  }
   332  
   333  # EVIDENCE-OF: R-45424-07352 If there is only a single table or subquery
   334  # in the FROM clause, then the input data used by the SELECT statement
   335  # is the contents of the named table.
   336  #
   337  #   The results of the SELECT queries suggest that they are operating on the
   338  #   contents of the table 'xx'.
   339  #
   340  do_execsql_test e_select-1.2.0 {
   341    CREATE TABLE xx(x, y);
   342    INSERT INTO xx VALUES('IiJlsIPepMuAhU', X'10B00B897A15BAA02E3F98DCE8F2');
   343    INSERT INTO xx VALUES(NULL, -16.87);
   344    INSERT INTO xx VALUES(-17.89, 'linguistically');
   345  } {}
   346  do_select_tests e_select-1.2 {
   347    1  "SELECT quote(x), quote(y) FROM xx" {
   348       'IiJlsIPepMuAhU' X'10B00B897A15BAA02E3F98DCE8F2' 
   349       NULL             -16.87                          
   350       -17.89           'linguistically'                
   351    }
   352  
   353    2  "SELECT count(*), count(x), count(y) FROM xx" {3 2 3}
   354    3  "SELECT sum(x), sum(y) FROM xx"               {-17.89 -16.87}
   355  }
   356  
   357  # EVIDENCE-OF: R-28355-09804 If there is more than one table or subquery
   358  # in FROM clause then the contents of all tables and/or subqueries are
   359  # joined into a single dataset for the simple SELECT statement to
   360  # operate on.
   361  #
   362  #   There are more detailed tests for subsequent requirements that add 
   363  #   more detail to this idea. We just add a single test that shows that
   364  #   data is coming from each of the three tables following the FROM clause
   365  #   here to show that the statement, vague as it is, is not incorrect.
   366  #
   367  do_select_tests e_select-1.3 {
   368    1 "SELECT * FROM t1, t2, t3" {
   369        a one a I a 1 a one a I b 2 a one b II a 1 
   370        a one b II b 2 a one c III a 1 a one c III b 2 
   371        b two a I a 1 b two a I b 2 b two b II a 1 
   372        b two b II b 2 b two c III a 1 b two c III b 2 
   373        c three a I a 1 c three a I b 2 c three b II a 1 
   374        c three b II b 2 c three c III a 1 c three c III b 2
   375    }
   376  }
   377  
   378  #
   379  # The following block of tests - e_select-1.4.* - test that the description
   380  # of cartesian joins in the SELECT documentation is consistent with SQLite.
   381  # In doing so, we test the following three requirements as a side-effect:
   382  #
   383  # EVIDENCE-OF: R-49872-03192 If the join-operator is "CROSS JOIN",
   384  # "INNER JOIN", "JOIN" or a comma (",") and there is no ON or USING
   385  # clause, then the result of the join is simply the cartesian product of
   386  # the left and right-hand datasets.
   387  #
   388  #    The tests are built on this assertion. Really, they test that the output
   389  #    of a CROSS JOIN, JOIN, INNER JOIN or "," join matches the expected result
   390  #    of calculating the cartesian product of the left and right-hand datasets. 
   391  #
   392  # EVIDENCE-OF: R-46256-57243 There is no difference between the "INNER
   393  # JOIN", "JOIN" and "," join operators.
   394  #
   395  # EVIDENCE-OF: R-25071-21202 The "CROSS JOIN" join operator produces the
   396  # same result as the "INNER JOIN", "JOIN" and "," operators
   397  #
   398  #    All tests are run 4 times, with the only difference in each run being
   399  #    which of the 4 equivalent cartesian product join operators are used.
   400  #    Since the output data is the same in all cases, we consider that this
   401  #    qualifies as testing the two statements above.
   402  #
   403  do_execsql_test e_select-1.4.0 {
   404    CREATE TABLE x1(a, b);
   405    CREATE TABLE x2(c, d, e);
   406    CREATE TABLE x3(f, g, h, i);
   407  
   408    -- x1: 3 rows, 2 columns
   409    INSERT INTO x1 VALUES(24, 'converging');
   410    INSERT INTO x1 VALUES(NULL, X'CB71');
   411    INSERT INTO x1 VALUES('blonds', 'proprietary');
   412  
   413    -- x2: 2 rows, 3 columns
   414    INSERT INTO x2 VALUES(-60.06, NULL, NULL);
   415    INSERT INTO x2 VALUES(-58, NULL, 1.21);
   416  
   417    -- x3: 5 rows, 4 columns
   418    INSERT INTO x3 VALUES(-39.24, NULL, 'encompass', -1);
   419    INSERT INTO x3 VALUES('presenting', 51, 'reformation', 'dignified');
   420    INSERT INTO x3 VALUES('conducting', -87.24, 37.56, NULL);
   421    INSERT INTO x3 VALUES('coldest', -96, 'dramatists', 82.3);
   422    INSERT INTO x3 VALUES('alerting', NULL, -93.79, NULL);
   423  } {}
   424  
   425  # EVIDENCE-OF: R-59089-25828 The columns of the cartesian product
   426  # dataset are, in order, all the columns of the left-hand dataset
   427  # followed by all the columns of the right-hand dataset.
   428  #
   429  do_join_test e_select-1.4.1.1 {
   430    SELECT * FROM x1 %JOIN% x2 LIMIT 1
   431  } [concat {24 converging} {-60.06 {} {}}]
   432  
   433  do_join_test e_select-1.4.1.2 {
   434    SELECT * FROM x2 %JOIN% x1 LIMIT 1
   435  } [concat {-60.06 {} {}} {24 converging}]
   436  
   437  do_join_test e_select-1.4.1.3 {
   438    SELECT * FROM x3 %JOIN% x2 LIMIT 1
   439  } [concat {-39.24 {} encompass -1} {-60.06 {} {}}]
   440  
   441  do_join_test e_select-1.4.1.4 {
   442    SELECT * FROM x2 %JOIN% x3 LIMIT 1
   443  } [concat {-60.06 {} {}} {-39.24 {} encompass -1}]
   444  
   445  # EVIDENCE-OF: R-44414-54710 There is a row in the cartesian product
   446  # dataset formed by combining each unique combination of a row from the
   447  # left-hand and right-hand datasets.
   448  #
   449  do_join_test e_select-1.4.2.1 {
   450    SELECT * FROM x2 %JOIN% x3 ORDER BY +c, +f
   451  } [list -60.06 {} {}      -39.24 {} encompass -1                 \
   452          -60.06 {} {}      alerting {} -93.79 {}                  \
   453          -60.06 {} {}      coldest -96 dramatists 82.3            \
   454          -60.06 {} {}      conducting -87.24 37.56 {}             \
   455          -60.06 {} {}      presenting 51 reformation dignified    \
   456          -58 {} 1.21       -39.24 {} encompass -1                 \
   457          -58 {} 1.21       alerting {} -93.79 {}                  \
   458          -58 {} 1.21       coldest -96 dramatists 82.3            \
   459          -58 {} 1.21       conducting -87.24 37.56 {}             \
   460          -58 {} 1.21       presenting 51 reformation dignified    \
   461  ]
   462  # TODO: Come back and add a few more like the above.
   463  
   464  # EVIDENCE-OF: R-18439-38548 In other words, if the left-hand dataset
   465  # consists of Nleft rows of Mleft columns, and the right-hand dataset of
   466  # Nright rows of Mright columns, then the cartesian product is a dataset
   467  # of Nleft&times;Nright rows, each containing Mleft+Mright columns.
   468  #
   469  # x1, x2    (Nlhs=3, Nrhs=2)   (Mlhs=2, Mrhs=3)
   470  do_join_test e_select-1.4.3.1 { 
   471    SELECT count(*) FROM x1 %JOIN% x2 
   472  } [expr 3*2]
   473  do_test e_select-1.4.3.2 { 
   474    expr {[llength [execsql {SELECT * FROM x1, x2}]] / 6}
   475  } [expr 2+3]
   476  
   477  # x2, x3    (Nlhs=2, Nrhs=5)   (Mlhs=3, Mrhs=4)
   478  do_join_test e_select-1.4.3.3 { 
   479    SELECT count(*) FROM x2 %JOIN% x3 
   480  } [expr 2*5]
   481  do_test e_select-1.4.3.4 { 
   482    expr {[llength [execsql {SELECT * FROM x2 JOIN x3}]] / 10}
   483  } [expr 3+4]
   484  
   485  # x3, x1    (Nlhs=5, Nrhs=3)   (Mlhs=4, Mrhs=2)
   486  do_join_test e_select-1.4.3.5 { 
   487    SELECT count(*) FROM x3 %JOIN% x1 
   488  } [expr 5*3]
   489  do_test e_select-1.4.3.6 { 
   490    expr {[llength [execsql {SELECT * FROM x3 CROSS JOIN x1}]] / 15}
   491  } [expr 4+2]
   492  
   493  # x3, x3    (Nlhs=5, Nrhs=5)   (Mlhs=4, Mrhs=4)
   494  do_join_test e_select-1.4.3.7 { 
   495    SELECT count(*) FROM x3 %JOIN% x3 
   496  } [expr 5*5]
   497  do_test e_select-1.4.3.8 { 
   498    expr {[llength [execsql {SELECT * FROM x3 INNER JOIN x3 AS x4}]] / 25}
   499  } [expr 4+4]
   500  
   501  # Some extra cartesian product tests using tables t1 and t2.
   502  #
   503  do_execsql_test e_select-1.4.4.1 { SELECT * FROM t1, t2 } $t1_cross_t2
   504  do_execsql_test e_select-1.4.4.2 { SELECT * FROM t1 AS x, t1 AS y} $t1_cross_t1
   505  
   506  do_select_tests e_select-1.4.5 [list                                   \
   507      1 { SELECT * FROM t1 CROSS JOIN t2 }           $t1_cross_t2        \
   508      2 { SELECT * FROM t1 AS y CROSS JOIN t1 AS x } $t1_cross_t1        \
   509      3 { SELECT * FROM t1 INNER JOIN t2 }           $t1_cross_t2        \
   510      4 { SELECT * FROM t1 AS y INNER JOIN t1 AS x } $t1_cross_t1        \
   511  ]
   512  
   513  # EVIDENCE-OF: R-38465-03616 If there is an ON clause then the ON
   514  # expression is evaluated for each row of the cartesian product as a
   515  # boolean expression. Only rows for which the expression evaluates to
   516  # true are included from the dataset.
   517  #
   518  foreach {tn select res} [list                                              \
   519      1 { SELECT * FROM t1 %JOIN% t2 ON (1) }       $t1_cross_t2             \
   520      2 { SELECT * FROM t1 %JOIN% t2 ON (0) }       [list]                   \
   521      3 { SELECT * FROM t1 %JOIN% t2 ON (NULL) }    [list]                   \
   522      4 { SELECT * FROM t1 %JOIN% t2 ON ('abc') }   [list]                   \
   523      5 { SELECT * FROM t1 %JOIN% t2 ON ('1ab') }   $t1_cross_t2             \
   524      6 { SELECT * FROM t1 %JOIN% t2 ON (0.9) }     $t1_cross_t2             \
   525      7 { SELECT * FROM t1 %JOIN% t2 ON ('0.9') }   $t1_cross_t2             \
   526      8 { SELECT * FROM t1 %JOIN% t2 ON (0.0) }     [list]                   \
   527                                                                             \
   528      9 { SELECT t1.b, t2.b FROM t1 %JOIN% t2 ON (t1.a = t2.a) }             \
   529        {one I two II three III}                                             \
   530     10 { SELECT t1.b, t2.b FROM t1 %JOIN% t2 ON (t1.a = 'a') }              \
   531        {one I one II one III}                                               \
   532     11 { SELECT t1.b, t2.b 
   533          FROM t1 %JOIN% t2 ON (CASE WHEN t1.a = 'a' THEN NULL ELSE 1 END) } \
   534        {two I two II two III three I three II three III}                    \
   535  ] {
   536    do_join_test e_select-1.3.$tn $select $res
   537  }
   538  
   539  # EVIDENCE-OF: R-49933-05137 If there is a USING clause then each of the
   540  # column names specified must exist in the datasets to both the left and
   541  # right of the join-operator.
   542  #
   543  do_select_tests e_select-1.4 -error {
   544    cannot join using column %s - column not present in both tables
   545  } {
   546    1 { SELECT * FROM t1, t3 USING (b) }   "b"
   547    2 { SELECT * FROM t3, t1 USING (c) }   "c"
   548    3 { SELECT * FROM t3, (SELECT a AS b, b AS c FROM t1) USING (a) }   "a"
   549  } 
   550  
   551  # EVIDENCE-OF: R-22776-52830 For each pair of named columns, the
   552  # expression "lhs.X = rhs.X" is evaluated for each row of the cartesian
   553  # product as a boolean expression. Only rows for which all such
   554  # expressions evaluates to true are included from the result set.
   555  #
   556  do_select_tests e_select-1.5 {
   557    1 { SELECT * FROM t1, t3 USING (a)   }  {a one 1 b two 2}
   558    2 { SELECT * FROM t3, t4 USING (a,c) }  {b 2}
   559  } 
   560  
   561  # EVIDENCE-OF: R-54046-48600 When comparing values as a result of a
   562  # USING clause, the normal rules for handling affinities, collation
   563  # sequences and NULL values in comparisons apply.
   564  #
   565  # EVIDENCE-OF: R-38422-04402 The column from the dataset on the
   566  # left-hand side of the join-operator is considered to be on the
   567  # left-hand side of the comparison operator (=) for the purposes of
   568  # collation sequence and affinity precedence.
   569  #
   570  do_execsql_test e_select-1.6.0 {
   571    CREATE TABLE t5(a COLLATE nocase, b COLLATE binary);
   572    INSERT INTO t5 VALUES('AA', 'cc');
   573    INSERT INTO t5 VALUES('BB', 'dd');
   574    INSERT INTO t5 VALUES(NULL, NULL);
   575    CREATE TABLE t6(a COLLATE binary, b COLLATE nocase);
   576    INSERT INTO t6 VALUES('aa', 'cc');
   577    INSERT INTO t6 VALUES('bb', 'DD');
   578    INSERT INTO t6 VALUES(NULL, NULL);
   579  } {}
   580  foreach {tn select res} {
   581    1 { SELECT * FROM t5 %JOIN% t6 USING (a) } {AA cc cc BB dd DD}
   582    2 { SELECT * FROM t6 %JOIN% t5 USING (a) } {}
   583    3 { SELECT * FROM (SELECT a COLLATE nocase, b FROM t6) %JOIN% t5 USING (a) } 
   584      {aa cc cc bb DD dd}
   585    4 { SELECT * FROM t5 %JOIN% t6 USING (a,b) } {AA cc}
   586    5 { SELECT * FROM t6 %JOIN% t5 USING (a,b) } {}
   587  } {
   588    do_join_test e_select-1.6.$tn $select $res
   589  }
   590  
   591  # EVIDENCE-OF: R-57047-10461 For each pair of columns identified by a
   592  # USING clause, the column from the right-hand dataset is omitted from
   593  # the joined dataset.
   594  #
   595  # EVIDENCE-OF: R-56132-15700 This is the only difference between a USING
   596  # clause and its equivalent ON constraint.
   597  #
   598  foreach {tn select res} {
   599    1a { SELECT * FROM t1 %JOIN% t2 USING (a)      } 
   600       {a one I b two II c three III}
   601    1b { SELECT * FROM t1 %JOIN% t2 ON (t1.a=t2.a) }
   602       {a one a I b two b II c three c III}
   603  
   604    2a { SELECT * FROM t3 %JOIN% t4 USING (a)      }  
   605       {a 1 {} b 2 2}
   606    2b { SELECT * FROM t3 %JOIN% t4 ON (t3.a=t4.a) } 
   607       {a 1 a {} b 2 b 2}
   608  
   609    3a { SELECT * FROM t3 %JOIN% t4 USING (a,c)                  } {b 2}
   610    3b { SELECT * FROM t3 %JOIN% t4 ON (t3.a=t4.a AND t3.c=t4.c) } {b 2 b 2}
   611  
   612    4a { SELECT * FROM (SELECT a COLLATE nocase, b FROM t6) AS x 
   613         %JOIN% t5 USING (a) } 
   614       {aa cc cc bb DD dd}
   615    4b { SELECT * FROM (SELECT a COLLATE nocase, b FROM t6) AS x
   616         %JOIN% t5 ON (x.a=t5.a) } 
   617       {aa cc AA cc bb DD BB dd}
   618  } {
   619    do_join_test e_select-1.7.$tn $select $res
   620  }
   621  
   622  # EVIDENCE-OF: R-24610-05866 If the join-operator is a "LEFT JOIN" or
   623  # "LEFT OUTER JOIN", then after the ON or USING filtering clauses have
   624  # been applied, an extra row is added to the output for each row in the
   625  # original left-hand input dataset that does not match any row in the
   626  # right-hand dataset.
   627  #
   628  do_execsql_test e_select-1.8.0 {
   629    CREATE TABLE t7(a, b, c);
   630    CREATE TABLE t8(a, d, e);
   631  
   632    INSERT INTO t7 VALUES('x', 'ex',  24);
   633    INSERT INTO t7 VALUES('y', 'why', 25);
   634  
   635    INSERT INTO t8 VALUES('x', 'abc', 24);
   636    INSERT INTO t8 VALUES('z', 'ghi', 26);
   637  } {}
   638  
   639  do_select_tests e_select-1.8 {
   640    1a "SELECT count(*) FROM t7 JOIN t8 ON (t7.a=t8.a)" {1}
   641    1b "SELECT count(*) FROM t7 LEFT JOIN t8 ON (t7.a=t8.a)" {2}
   642    2a "SELECT count(*) FROM t7 JOIN t8 USING (a)" {1}
   643    2b "SELECT count(*) FROM t7 LEFT JOIN t8 USING (a)" {2}
   644  }
   645  
   646  
   647  # EVIDENCE-OF: R-15607-52988 The added rows contain NULL values in the
   648  # columns that would normally contain values copied from the right-hand
   649  # input dataset.
   650  #
   651  do_select_tests e_select-1.9 {
   652    1a "SELECT * FROM t7 JOIN t8 ON (t7.a=t8.a)" {x ex 24 x abc 24}
   653    1b "SELECT * FROM t7 LEFT JOIN t8 ON (t7.a=t8.a)" 
   654       {x ex 24 x abc 24 y why 25 {} {} {}}
   655    2a "SELECT * FROM t7 JOIN t8 USING (a)" {x ex 24 abc 24}
   656    2b "SELECT * FROM t7 LEFT JOIN t8 USING (a)" {x ex 24 abc 24 y why 25 {} {}}
   657  }
   658  
   659  # EVIDENCE-OF: R-04932-55942 If the NATURAL keyword is in the
   660  # join-operator then an implicit USING clause is added to the
   661  # join-constraints. The implicit USING clause contains each of the
   662  # column names that appear in both the left and right-hand input
   663  # datasets.
   664  #
   665  do_select_tests e_select-1-10 {
   666    1a "SELECT * FROM t7 JOIN t8 USING (a)"        {x ex 24 abc 24}
   667    1b "SELECT * FROM t7 NATURAL JOIN t8"          {x ex 24 abc 24}
   668  
   669    2a "SELECT * FROM t8 JOIN t7 USING (a)"        {x abc 24 ex 24}
   670    2b "SELECT * FROM t8 NATURAL JOIN t7"          {x abc 24 ex 24}
   671  
   672    3a "SELECT * FROM t7 LEFT JOIN t8 USING (a)"   {x ex 24 abc 24 y why 25 {} {}}
   673    3b "SELECT * FROM t7 NATURAL LEFT JOIN t8"     {x ex 24 abc 24 y why 25 {} {}}
   674  
   675    4a "SELECT * FROM t8 LEFT JOIN t7 USING (a)"   {x abc 24 ex 24 z ghi 26 {} {}}
   676    4b "SELECT * FROM t8 NATURAL LEFT JOIN t7"     {x abc 24 ex 24 z ghi 26 {} {}}
   677  
   678    5a "SELECT * FROM t3 JOIN t4 USING (a,c)"      {b 2}
   679    5b "SELECT * FROM t3 NATURAL JOIN t4"          {b 2}
   680  
   681    6a "SELECT * FROM t3 LEFT JOIN t4 USING (a,c)" {a 1 b 2}
   682    6b "SELECT * FROM t3 NATURAL LEFT JOIN t4"     {a 1 b 2}
   683  } 
   684  
   685  # EVIDENCE-OF: R-49566-01570 If the left and right-hand input datasets
   686  # feature no common column names, then the NATURAL keyword has no effect
   687  # on the results of the join.
   688  #
   689  do_execsql_test e_select-1.11.0 {
   690    CREATE TABLE t10(x, y);
   691    INSERT INTO t10 VALUES(1, 'true');
   692    INSERT INTO t10 VALUES(0, 'false');
   693  } {}
   694  do_select_tests e_select-1-11 {
   695    1a "SELECT a, x FROM t1 CROSS JOIN t10" {a 1 a 0 b 1 b 0 c 1 c 0}
   696    1b "SELECT a, x FROM t1 NATURAL CROSS JOIN t10" {a 1 a 0 b 1 b 0 c 1 c 0}
   697  }
   698  
   699  # EVIDENCE-OF: R-39625-59133 A USING or ON clause may not be added to a
   700  # join that specifies the NATURAL keyword.
   701  #
   702  foreach {tn sql} {
   703    1 {SELECT * FROM t1 NATURAL LEFT JOIN t2 USING (a)}
   704    2 {SELECT * FROM t1 NATURAL LEFT JOIN t2 ON (t1.a=t2.a)}
   705    3 {SELECT * FROM t1 NATURAL LEFT JOIN t2 ON (45)}
   706  } {
   707    do_catchsql_test e_select-1.12.$tn "
   708      $sql
   709    " {1 {a NATURAL join may not have an ON or USING clause}}
   710  }
   711  
   712  #-------------------------------------------------------------------------
   713  # The next block of tests - e_select-3.* - concentrate on verifying 
   714  # statements made regarding WHERE clause processing.
   715  #
   716  drop_all_tables
   717  do_execsql_test e_select-3.0 {
   718    CREATE TABLE x1(k, x, y, z);
   719    INSERT INTO x1 VALUES(1, 'relinquished', 'aphasia', 78.43);
   720    INSERT INTO x1 VALUES(2, X'A8E8D66F',    X'07CF',   -81);
   721    INSERT INTO x1 VALUES(3, -22,            -27.57,    NULL);
   722    INSERT INTO x1 VALUES(4, NULL,           'bygone',  'picky');
   723    INSERT INTO x1 VALUES(5, NULL,           96.28,     NULL);
   724    INSERT INTO x1 VALUES(6, 0,              1,         2);
   725  
   726    CREATE TABLE x2(k, x, y2);
   727    INSERT INTO x2 VALUES(1, 50, X'B82838');
   728    INSERT INTO x2 VALUES(5, 84.79, 65.88);
   729    INSERT INTO x2 VALUES(3, -22, X'0E1BE452A393');
   730    INSERT INTO x2 VALUES(7, 'mistrusted', 'standardized');
   731  } {}
   732  
   733  # EVIDENCE-OF: R-60775-64916 If a WHERE clause is specified, the WHERE
   734  # expression is evaluated for each row in the input data as a boolean
   735  # expression. Only rows for which the WHERE clause expression evaluates
   736  # to true are included from the dataset before continuing.
   737  #
   738  do_execsql_test e_select-3.1.1 { SELECT k FROM x1 WHERE x }         {3}
   739  do_execsql_test e_select-3.1.2 { SELECT k FROM x1 WHERE y }         {3 5 6}
   740  do_execsql_test e_select-3.1.3 { SELECT k FROM x1 WHERE z }         {1 2 6}
   741  do_execsql_test e_select-3.1.4 { SELECT k FROM x1 WHERE '1'||z    } {1 2 4 6}
   742  do_execsql_test e_select-3.1.5 { SELECT k FROM x1 WHERE x IS NULL } {4 5}
   743  do_execsql_test e_select-3.1.6 { SELECT k FROM x1 WHERE z - 78.43 } {2 4 6}
   744  
   745  do_execsql_test e_select-3.2.1a {
   746    SELECT k FROM x1 LEFT JOIN x2 USING(k)
   747  } {1 2 3 4 5 6}
   748  do_execsql_test e_select-3.2.1b {
   749    SELECT k FROM x1 LEFT JOIN x2 USING(k) WHERE x2.k ORDER BY +k
   750  } {1 3 5}
   751  do_execsql_test e_select-3.2.2 {
   752    SELECT k FROM x1 LEFT JOIN x2 USING(k) WHERE x2.k IS NULL
   753  } {2 4 6}
   754  
   755  do_execsql_test e_select-3.2.3 {
   756    SELECT k FROM x1 NATURAL JOIN x2 WHERE x2.k
   757  } {3}
   758  do_execsql_test e_select-3.2.4 {
   759    SELECT k FROM x1 NATURAL JOIN x2 WHERE x2.k-3
   760  } {}
   761  
   762  #-------------------------------------------------------------------------
   763  # Tests below this point are focused on verifying the testable statements
   764  # related to caculating the result rows of a simple SELECT statement.
   765  #
   766  
   767  drop_all_tables
   768  do_execsql_test e_select-4.0 {
   769    CREATE TABLE z1(a, b, c);
   770    CREATE TABLE z2(d, e);
   771    CREATE TABLE z3(a, b);
   772  
   773    INSERT INTO z1 VALUES(51.65, -59.58, 'belfries');
   774    INSERT INTO z1 VALUES(-5, NULL, 75);
   775    INSERT INTO z1 VALUES(-2.2, -23.18, 'suiters');
   776    INSERT INTO z1 VALUES(NULL, 67, 'quartets');
   777    INSERT INTO z1 VALUES(-1.04, -32.3, 'aspen');
   778    INSERT INTO z1 VALUES(63, 'born', -26);
   779  
   780    INSERT INTO z2 VALUES(NULL, 21);
   781    INSERT INTO z2 VALUES(36, 6);
   782  
   783    INSERT INTO z3 VALUES('subsistence', 'gauze');
   784    INSERT INTO z3 VALUES(49.17, -67);
   785  } {}
   786  
   787  # EVIDENCE-OF: R-36327-17224 If a result expression is the special
   788  # expression "*" then all columns in the input data are substituted for
   789  # that one expression.
   790  #
   791  # EVIDENCE-OF: R-43693-30522 If the expression is the alias of a table
   792  # or subquery in the FROM clause followed by ".*" then all columns from
   793  # the named table or subquery are substituted for the single expression.
   794  #
   795  do_select_tests e_select-4.1 {
   796    1  "SELECT * FROM z1 LIMIT 1"             {51.65 -59.58 belfries}
   797    2  "SELECT * FROM z1,z2 LIMIT 1"          {51.65 -59.58 belfries {} 21}
   798    3  "SELECT z1.* FROM z1,z2 LIMIT 1"       {51.65 -59.58 belfries}
   799    4  "SELECT z2.* FROM z1,z2 LIMIT 1"       {{} 21}
   800    5  "SELECT z2.*, z1.* FROM z1,z2 LIMIT 1" {{} 21 51.65 -59.58 belfries}
   801  
   802    6  "SELECT count(*), * FROM z1"           {6 51.65 -59.58 belfries}
   803    7  "SELECT max(a), * FROM z1"             {63 63 born -26}
   804    8  "SELECT *, min(a) FROM z1"             {-5 {} 75 -5}
   805  
   806    9  "SELECT *,* FROM z1,z2 LIMIT 1" {        
   807       51.65 -59.58 belfries {} 21 51.65 -59.58 belfries {} 21
   808    }
   809    10 "SELECT z1.*,z1.* FROM z2,z1 LIMIT 1" {        
   810       51.65 -59.58 belfries 51.65 -59.58 belfries
   811    }
   812  }
   813  
   814  # EVIDENCE-OF: R-38023-18396 It is an error to use a "*" or "alias.*"
   815  # expression in any context other than a result expression list.
   816  #
   817  # EVIDENCE-OF: R-44324-41166 It is also an error to use a "*" or
   818  # "alias.*" expression in a simple SELECT query that does not have a
   819  # FROM clause.
   820  #
   821  foreach {tn select err} {
   822    1.1  "SELECT a, b, c FROM z1 WHERE *"    {near "*": syntax error}
   823    1.2  "SELECT a, b, c FROM z1 GROUP BY *" {near "*": syntax error}
   824    1.3  "SELECT 1 + * FROM z1"              {near "*": syntax error}
   825    1.4  "SELECT * + 1 FROM z1"              {near "+": syntax error}
   826  
   827    2.1 "SELECT *" {no tables specified}
   828    2.2 "SELECT * WHERE 1" {no tables specified}
   829    2.3 "SELECT * WHERE 0" {no tables specified}
   830    2.4 "SELECT count(*), *" {no tables specified}
   831  } {
   832    do_catchsql_test e_select-4.2.$tn $select [list 1 $err]
   833  }
   834  
   835  # EVIDENCE-OF: R-08669-22397 The number of columns in the rows returned
   836  # by a simple SELECT statement is equal to the number of expressions in
   837  # the result expression list after substitution of * and alias.*
   838  # expressions.
   839  #
   840  foreach {tn select nCol} {
   841    1   "SELECT * FROM z1"   3
   842    2   "SELECT * FROM z1 NATURAL JOIN z3"            3
   843    3   "SELECT z1.* FROM z1 NATURAL JOIN z3"         3
   844    4   "SELECT z3.* FROM z1 NATURAL JOIN z3"         2
   845    5   "SELECT z1.*, z3.* FROM z1 NATURAL JOIN z3"   5
   846    6   "SELECT 1, 2, z1.* FROM z1"                   5
   847    7   "SELECT a, *, b, c FROM z1"                   6
   848  } {
   849    set ::stmt [sqlite3_prepare_v2 db $select -1 DUMMY]
   850    do_test e_select-4.3.$tn { sqlite3_column_count $::stmt } $nCol
   851    sqlite3_finalize $::stmt
   852  }
   853  
   854  
   855  
   856  # In lang_select.html, a non-aggregate query is defined as any simple SELECT
   857  # that has no GROUP BY clause and no aggregate expressions in the result
   858  # expression list. Other queries are aggregate queries. Test cases
   859  # e_select-4.4.* through e_select-4.12.*, inclusive, which test the part of
   860  # simple SELECT that is different for aggregate and non-aggregate queries
   861  # verify (in a way) that these definitions are consistent:
   862  #
   863  # EVIDENCE-OF: R-20637-43463 A simple SELECT statement is an aggregate
   864  # query if it contains either a GROUP BY clause or one or more aggregate
   865  # functions in the result-set.
   866  #
   867  # EVIDENCE-OF: R-23155-55597 Otherwise, if a simple SELECT contains no
   868  # aggregate functions or a GROUP BY clause, it is a non-aggregate query.
   869  #
   870  
   871  # EVIDENCE-OF: R-44050-47362 If the SELECT statement is a non-aggregate
   872  # query, then each expression in the result expression list is evaluated
   873  # for each row in the dataset filtered by the WHERE clause.
   874  #
   875  do_select_tests e_select-4.4 {
   876    1 "SELECT a, b FROM z1"
   877      {51.65 -59.58 -5 {} -2.2 -23.18 {} 67 -1.04 -32.3 63 born}
   878  
   879    2 "SELECT a IS NULL, b+1, * FROM z1" {
   880          0 -58.58   51.65 -59.58 belfries
   881          0 {}       -5 {} 75            
   882          0 -22.18   -2.2 -23.18 suiters
   883          1 68       {} 67 quartets    
   884          0 -31.3    -1.04 -32.3 aspen
   885          0 1        63 born -26
   886    }
   887  
   888    3 "SELECT 32*32, d||e FROM z2" {1024 {} 1024 366}
   889  }
   890  
   891  
   892  # Test cases e_select-4.5.* and e_select-4.6.* together show that:
   893  #
   894  # EVIDENCE-OF: R-51988-01124 The single row of result-set data created
   895  # by evaluating the aggregate and non-aggregate expressions in the
   896  # result-set forms the result of an aggregate query without a GROUP BY
   897  # clause.
   898  #
   899  
   900  # EVIDENCE-OF: R-57629-25253 If the SELECT statement is an aggregate
   901  # query without a GROUP BY clause, then each aggregate expression in the
   902  # result-set is evaluated once across the entire dataset.
   903  #
   904  do_select_tests e_select-4.5 {
   905    1 "SELECT count(a), max(a), count(b), max(b) FROM z1"      {5 63 5 born}
   906    2 "SELECT count(*), max(1)"                                {1 1}
   907  
   908    3 "SELECT sum(b+1) FROM z1 NATURAL LEFT JOIN z3"           {-43.06}
   909    4 "SELECT sum(b+2) FROM z1 NATURAL LEFT JOIN z3"           {-38.06}
   910    5 "SELECT sum(b IS NOT NULL) FROM z1 NATURAL LEFT JOIN z3" {5}
   911  }
   912  
   913  # EVIDENCE-OF: R-26684-40576 Each non-aggregate expression in the
   914  # result-set is evaluated once for an arbitrarily selected row of the
   915  # dataset.
   916  #
   917  # EVIDENCE-OF: R-27994-60376 The same arbitrarily selected row is used
   918  # for each non-aggregate expression.
   919  #
   920  #   Note: The results of many of the queries in this block of tests are
   921  #   technically undefined, as the documentation does not specify which row
   922  #   SQLite will arbitrarily select to use for the evaluation of the
   923  #   non-aggregate expressions.
   924  #
   925  drop_all_tables
   926  do_execsql_test e_select-4.6.0 {
   927    CREATE TABLE a1(one PRIMARY KEY, two);
   928    INSERT INTO a1 VALUES(1, 1);
   929    INSERT INTO a1 VALUES(2, 3);
   930    INSERT INTO a1 VALUES(3, 6);
   931    INSERT INTO a1 VALUES(4, 10);
   932  
   933    CREATE TABLE a2(one PRIMARY KEY, three);
   934    INSERT INTO a2 VALUES(1, 1);
   935    INSERT INTO a2 VALUES(3, 2);
   936    INSERT INTO a2 VALUES(6, 3);
   937    INSERT INTO a2 VALUES(10, 4);
   938  } {}
   939  do_select_tests e_select-4.6 {
   940    1 "SELECT one, two, count(*) FROM a1"                        {1 1 4}
   941    2 "SELECT one, two, count(*) FROM a1 WHERE one<3"            {1 1 2}
   942    3 "SELECT one, two, count(*) FROM a1 WHERE one>3"            {4 10 1} 
   943    4 "SELECT *, count(*) FROM a1 JOIN a2"                       {1 1 1 1 16}
   944    5 "SELECT *, sum(three) FROM a1 NATURAL JOIN a2"             {1 1 1 3}
   945    6 "SELECT *, sum(three) FROM a1 NATURAL JOIN a2"             {1 1 1 3}
   946    7 "SELECT group_concat(three, ''), a1.* FROM a1 NATURAL JOIN a2" {12 1 1}
   947  }
   948  
   949  # EVIDENCE-OF: R-04486-07266 Or, if the dataset contains zero rows, then
   950  # each non-aggregate expression is evaluated against a row consisting
   951  # entirely of NULL values.
   952  #
   953  do_select_tests e_select-4.7 {
   954    1  "SELECT one, two, count(*) FROM a1 WHERE 0"           {{} {} 0}
   955    2  "SELECT sum(two), * FROM a1, a2 WHERE three>5"        {{} {} {} {} {}}
   956    3  "SELECT max(one) IS NULL, one IS NULL, two IS NULL FROM a1 WHERE two=7" {
   957      1 1 1
   958    }
   959  } 
   960  
   961  # EVIDENCE-OF: R-64138-28774 An aggregate query without a GROUP BY
   962  # clause always returns exactly one row of data, even if there are zero
   963  # rows of input data.
   964  #
   965  foreach {tn select} {
   966    8.1  "SELECT count(*) FROM a1"
   967    8.2  "SELECT count(*) FROM a1 WHERE 0"
   968    8.3  "SELECT count(*) FROM a1 WHERE 1"
   969    8.4  "SELECT max(a1.one)+min(two), a1.one, two, * FROM a1, a2 WHERE 1"
   970    8.5  "SELECT max(a1.one)+min(two), a1.one, two, * FROM a1, a2 WHERE 0"
   971  } {
   972    # Set $nRow to the number of rows returned by $select:
   973    set ::stmt [sqlite3_prepare_v2 db $select -1 DUMMY]
   974    set nRow 0
   975    while {"SQLITE_ROW" == [sqlite3_step $::stmt]} { incr nRow }
   976    set rc [sqlite3_finalize $::stmt]
   977  
   978    # Test that $nRow==1 and that statement execution was successful 
   979    # (rc==SQLITE_OK).
   980    do_test e_select-4.$tn [list list $rc $nRow] {SQLITE_OK 1}
   981  }
   982  
   983  drop_all_tables
   984  do_execsql_test e_select-4.9.0 {
   985    CREATE TABLE b1(one PRIMARY KEY, two);
   986    INSERT INTO b1 VALUES(1, 'o');
   987    INSERT INTO b1 VALUES(4, 'f');
   988    INSERT INTO b1 VALUES(3, 't');
   989    INSERT INTO b1 VALUES(2, 't');
   990    INSERT INTO b1 VALUES(5, 'f');
   991    INSERT INTO b1 VALUES(7, 's');
   992    INSERT INTO b1 VALUES(6, 's');
   993  
   994    CREATE TABLE b2(x, y);
   995    INSERT INTO b2 VALUES(NULL, 0);
   996    INSERT INTO b2 VALUES(NULL, 1);
   997    INSERT INTO b2 VALUES('xyz', 2);
   998    INSERT INTO b2 VALUES('abc', 3);
   999    INSERT INTO b2 VALUES('xyz', 4);
  1000  
  1001    CREATE TABLE b3(a COLLATE nocase, b COLLATE binary);
  1002    INSERT INTO b3 VALUES('abc', 'abc');
  1003    INSERT INTO b3 VALUES('aBC', 'aBC');
  1004    INSERT INTO b3 VALUES('Def', 'Def');
  1005    INSERT INTO b3 VALUES('dEF', 'dEF');
  1006  } {}
  1007  
  1008  # EVIDENCE-OF: R-40855-36147 If the SELECT statement is an aggregate
  1009  # query with a GROUP BY clause, then each of the expressions specified
  1010  # as part of the GROUP BY clause is evaluated for each row of the
  1011  # dataset according to the processing rules stated below for ORDER BY
  1012  # expressions. Each row is then assigned to a "group" based on the
  1013  # results; rows for which the results of evaluating the GROUP BY
  1014  # expressions are the same get assigned to the same group.
  1015  #
  1016  #   These tests also show that the following is not untrue:
  1017  #
  1018  # EVIDENCE-OF: R-25883-55063 The expressions in the GROUP BY clause do
  1019  # not have to be expressions that appear in the result.
  1020  #
  1021  do_select_tests e_select-4.9 {
  1022    1  "SELECT group_concat(one), two FROM b1 GROUP BY two" {
  1023      /#,# f   1 o   #,#   s #,# t/
  1024    }
  1025    2  "SELECT group_concat(one), sum(one) FROM b1 GROUP BY (one>4)" {
  1026      1,2,3,4 10    5,6,7 18
  1027    }
  1028    3  "SELECT group_concat(one) FROM b1 GROUP BY (two>'o'), one%2" {
  1029      4  1,5    2,6   3,7
  1030    }
  1031    4  "SELECT group_concat(one) FROM b1 GROUP BY (one==2 OR two=='o')" {
  1032      4,3,5,7,6    1,2
  1033    }
  1034  }
  1035  
  1036  # EVIDENCE-OF: R-14926-50129 For the purposes of grouping rows, NULL
  1037  # values are considered equal.
  1038  #
  1039  do_select_tests e_select-4.10 {
  1040    1  "SELECT group_concat(y) FROM b2 GROUP BY x" {/#,#   3   #,#/}
  1041    2  "SELECT count(*) FROM b2 GROUP BY CASE WHEN y<4 THEN NULL ELSE 0 END" {4 1}
  1042  } 
  1043  
  1044  # EVIDENCE-OF: R-10470-30318 The usual rules for selecting a collation
  1045  # sequence with which to compare text values apply when evaluating
  1046  # expressions in a GROUP BY clause.
  1047  #
  1048  do_select_tests e_select-4.11 {
  1049    1  "SELECT count(*) FROM b3 GROUP BY b"      {1 1 1 1}
  1050    2  "SELECT count(*) FROM b3 GROUP BY a"      {2 2}
  1051    3  "SELECT count(*) FROM b3 GROUP BY +b"     {1 1 1 1}
  1052    4  "SELECT count(*) FROM b3 GROUP BY +a"     {2 2}
  1053    5  "SELECT count(*) FROM b3 GROUP BY b||''"  {1 1 1 1}
  1054    6  "SELECT count(*) FROM b3 GROUP BY a||''"  {1 1 1 1}
  1055  }
  1056  
  1057  # EVIDENCE-OF: R-63573-50730 The expressions in a GROUP BY clause may
  1058  # not be aggregate expressions.
  1059  #
  1060  foreach {tn select} {
  1061    12.1  "SELECT * FROM b3 GROUP BY count(*)"
  1062    12.2  "SELECT max(a) FROM b3 GROUP BY max(b)"
  1063    12.3  "SELECT group_concat(a) FROM b3 GROUP BY a, max(b)"
  1064  } {
  1065    set res {1 {aggregate functions are not allowed in the GROUP BY clause}}
  1066    do_catchsql_test e_select-4.$tn $select $res
  1067  }
  1068  
  1069  # EVIDENCE-OF: R-31537-00101 If a HAVING clause is specified, it is
  1070  # evaluated once for each group of rows as a boolean expression. If the
  1071  # result of evaluating the HAVING clause is false, the group is
  1072  # discarded.
  1073  #
  1074  #   This requirement is tested by all e_select-4.13.* tests.
  1075  #
  1076  # EVIDENCE-OF: R-04132-09474 If the HAVING clause is an aggregate
  1077  # expression, it is evaluated across all rows in the group.
  1078  #
  1079  #   Tested by e_select-4.13.1.*
  1080  #
  1081  # EVIDENCE-OF: R-28262-47447 If a HAVING clause is a non-aggregate
  1082  # expression, it is evaluated with respect to an arbitrarily selected
  1083  # row from the group.
  1084  #
  1085  #   Tested by e_select-4.13.2.*
  1086  #
  1087  #   Tests in this block also show that this is not untrue:
  1088  #
  1089  # EVIDENCE-OF: R-55403-13450 The HAVING expression may refer to values,
  1090  # even aggregate functions, that are not in the result.
  1091  #
  1092  do_execsql_test e_select-4.13.0 {
  1093    CREATE TABLE c1(up, down);
  1094    INSERT INTO c1 VALUES('x', 1);
  1095    INSERT INTO c1 VALUES('x', 2);
  1096    INSERT INTO c1 VALUES('x', 4);
  1097    INSERT INTO c1 VALUES('x', 8);
  1098    INSERT INTO c1 VALUES('y', 16);
  1099    INSERT INTO c1 VALUES('y', 32);
  1100  
  1101    CREATE TABLE c2(i, j);
  1102    INSERT INTO c2 VALUES(1, 0);
  1103    INSERT INTO c2 VALUES(2, 1);
  1104    INSERT INTO c2 VALUES(3, 3);
  1105    INSERT INTO c2 VALUES(4, 6);
  1106    INSERT INTO c2 VALUES(5, 10);
  1107    INSERT INTO c2 VALUES(6, 15);
  1108    INSERT INTO c2 VALUES(7, 21);
  1109    INSERT INTO c2 VALUES(8, 28);
  1110    INSERT INTO c2 VALUES(9, 36);
  1111  
  1112    CREATE TABLE c3(i PRIMARY KEY, k TEXT);
  1113    INSERT INTO c3 VALUES(1,  'hydrogen');
  1114    INSERT INTO c3 VALUES(2,  'helium');
  1115    INSERT INTO c3 VALUES(3,  'lithium');
  1116    INSERT INTO c3 VALUES(4,  'beryllium');
  1117    INSERT INTO c3 VALUES(5,  'boron');
  1118    INSERT INTO c3 VALUES(94, 'plutonium');
  1119  } {}
  1120  
  1121  do_select_tests e_select-4.13 {
  1122    1.1  "SELECT up FROM c1 GROUP BY up HAVING count(*)>3" {x}
  1123    1.2  "SELECT up FROM c1 GROUP BY up HAVING sum(down)>16" {y}
  1124    1.3  "SELECT up FROM c1 GROUP BY up HAVING sum(down)<16" {x}
  1125    1.4  "SELECT up||down FROM c1 GROUP BY (down<5) HAVING max(down)<10" {x4}
  1126  
  1127    2.1  "SELECT up FROM c1 GROUP BY up HAVING down>10" {y}
  1128    2.2  "SELECT up FROM c1 GROUP BY up HAVING up='y'"  {y}
  1129  
  1130    2.3  "SELECT i, j FROM c2 GROUP BY i>4 HAVING j>6"  {5 10}
  1131  }
  1132  
  1133  # EVIDENCE-OF: R-23927-54081 Each expression in the result-set is then
  1134  # evaluated once for each group of rows.
  1135  #
  1136  # EVIDENCE-OF: R-53735-47017 If the expression is an aggregate
  1137  # expression, it is evaluated across all rows in the group.
  1138  #
  1139  do_select_tests e_select-4.15 {
  1140    1  "SELECT sum(down) FROM c1 GROUP BY up" {15 48}
  1141    2  "SELECT sum(j), max(j) FROM c2 GROUP BY (i%3)"     {54 36 27 21 39 28}
  1142    3  "SELECT sum(j), max(j) FROM c2 GROUP BY (j%2)"     {80 36 40 21}
  1143    4  "SELECT 1+sum(j), max(j)+1 FROM c2 GROUP BY (j%2)" {81 37 41 22}
  1144    5  "SELECT count(*), round(avg(i),2) FROM c1, c2 ON (i=down) GROUP BY j%2"
  1145          {3 4.33 1 2.0}
  1146  } 
  1147  
  1148  # EVIDENCE-OF: R-62913-19830 Otherwise, it is evaluated against a single
  1149  # arbitrarily chosen row from within the group.
  1150  #
  1151  # EVIDENCE-OF: R-53924-08809 If there is more than one non-aggregate
  1152  # expression in the result-set, then all such expressions are evaluated
  1153  # for the same row.
  1154  #
  1155  do_select_tests e_select-4.15 {
  1156    1  "SELECT i, j FROM c2 GROUP BY i%2"             {2 1 1 0}
  1157    2  "SELECT i, j FROM c2 GROUP BY i%2 HAVING j<30" {2 1 1 0}
  1158    3  "SELECT i, j FROM c2 GROUP BY i%2 HAVING j>30" {}
  1159    4  "SELECT i, j FROM c2 GROUP BY i%2 HAVING j>30" {}
  1160    5  "SELECT count(*), i, k FROM c2 NATURAL JOIN c3 GROUP BY substr(k, 1, 1)"
  1161          {2 4 beryllium 2 1 hydrogen 1 3 lithium}
  1162  } 
  1163  
  1164  # EVIDENCE-OF: R-19334-12811 Each group of input dataset rows
  1165  # contributes a single row to the set of result rows.
  1166  #
  1167  # EVIDENCE-OF: R-02223-49279 Subject to filtering associated with the
  1168  # DISTINCT keyword, the number of rows returned by an aggregate query
  1169  # with a GROUP BY clause is the same as the number of groups of rows
  1170  # produced by applying the GROUP BY and HAVING clauses to the filtered
  1171  # input dataset.
  1172  #
  1173  do_select_tests e_select.4.16 -count {
  1174    1  "SELECT i, j FROM c2 GROUP BY i%2"          2
  1175    2  "SELECT i, j FROM c2 GROUP BY i"            9
  1176    3  "SELECT i, j FROM c2 GROUP BY i HAVING i<5" 4
  1177  } 
  1178  
  1179  #-------------------------------------------------------------------------
  1180  # The following tests attempt to verify statements made regarding the ALL
  1181  # and DISTINCT keywords.
  1182  #
  1183  drop_all_tables
  1184  do_execsql_test e_select-5.1.0 {
  1185    CREATE TABLE h1(a, b);
  1186    INSERT INTO h1 VALUES(1, 'one');
  1187    INSERT INTO h1 VALUES(1, 'I');
  1188    INSERT INTO h1 VALUES(1, 'i');
  1189    INSERT INTO h1 VALUES(4, 'four');
  1190    INSERT INTO h1 VALUES(4, 'IV');
  1191    INSERT INTO h1 VALUES(4, 'iv');
  1192  
  1193    CREATE TABLE h2(x COLLATE nocase);
  1194    INSERT INTO h2 VALUES('One');
  1195    INSERT INTO h2 VALUES('Two');
  1196    INSERT INTO h2 VALUES('Three');
  1197    INSERT INTO h2 VALUES('Four');
  1198    INSERT INTO h2 VALUES('one');
  1199    INSERT INTO h2 VALUES('two');
  1200    INSERT INTO h2 VALUES('three');
  1201    INSERT INTO h2 VALUES('four');
  1202  
  1203    CREATE TABLE h3(c, d);
  1204    INSERT INTO h3 VALUES(1, NULL);
  1205    INSERT INTO h3 VALUES(2, NULL);
  1206    INSERT INTO h3 VALUES(3, NULL);
  1207    INSERT INTO h3 VALUES(4, '2');
  1208    INSERT INTO h3 VALUES(5, NULL);
  1209    INSERT INTO h3 VALUES(6, '2,3');
  1210    INSERT INTO h3 VALUES(7, NULL);
  1211    INSERT INTO h3 VALUES(8, '2,4');
  1212    INSERT INTO h3 VALUES(9, '3');
  1213  } {}
  1214  
  1215  # EVIDENCE-OF: R-60770-10612 One of the ALL or DISTINCT keywords may
  1216  # follow the SELECT keyword in a simple SELECT statement.
  1217  #
  1218  do_select_tests e_select-5.1 {
  1219    1   "SELECT ALL a FROM h1"      {1 1 1 4 4 4}
  1220    2   "SELECT DISTINCT a FROM h1" {1 4}
  1221  }
  1222  
  1223  # EVIDENCE-OF: R-08861-34280 If the simple SELECT is a SELECT ALL, then
  1224  # the entire set of result rows are returned by the SELECT.
  1225  #
  1226  # EVIDENCE-OF: R-01256-01950 If neither ALL or DISTINCT are present,
  1227  # then the behavior is as if ALL were specified.
  1228  #
  1229  # EVIDENCE-OF: R-14442-41305 If the simple SELECT is a SELECT DISTINCT,
  1230  # then duplicate rows are removed from the set of result rows before it
  1231  # is returned.
  1232  #
  1233  #   The three testable statements above are tested by e_select-5.2.*,
  1234  #   5.3.* and 5.4.* respectively.
  1235  #
  1236  do_select_tests e_select-5 {
  1237    3.1 "SELECT ALL x FROM h2" {One Two Three Four one two three four}
  1238    3.2 "SELECT ALL x FROM h1, h2 ON (x=b)" {One one Four four}
  1239  
  1240    3.1 "SELECT x FROM h2" {One Two Three Four one two three four}
  1241    3.2 "SELECT x FROM h1, h2 ON (x=b)" {One one Four four}
  1242  
  1243    4.1 "SELECT DISTINCT x FROM h2" {One Two Three Four}
  1244    4.2 "SELECT DISTINCT x FROM h1, h2 ON (x=b)" {One Four}
  1245  } 
  1246  
  1247  # EVIDENCE-OF: R-02054-15343 For the purposes of detecting duplicate
  1248  # rows, two NULL values are considered to be equal.
  1249  #
  1250  do_select_tests e_select-5.5 {
  1251    1  "SELECT DISTINCT d FROM h3" {{} 2 2,3 2,4 3}
  1252  }
  1253  
  1254  # EVIDENCE-OF: R-47709-27231 The usual rules apply for selecting a
  1255  # collation sequence to compare text values.
  1256  #
  1257  do_select_tests e_select-5.6 {
  1258    1  "SELECT DISTINCT b FROM h1"                  {one I i four IV iv}
  1259    2  "SELECT DISTINCT b COLLATE nocase FROM h1"   {one I four IV}
  1260    3  "SELECT DISTINCT x FROM h2"                  {One Two Three Four}
  1261    4  "SELECT DISTINCT x COLLATE binary FROM h2"   {
  1262      One Two Three Four one two three four
  1263    }
  1264  }
  1265  
  1266  #-------------------------------------------------------------------------
  1267  # The following tests - e_select-7.* - test that statements made to do
  1268  # with compound SELECT statements are correct.
  1269  #
  1270  
  1271  # EVIDENCE-OF: R-39368-64333 In a compound SELECT, all the constituent
  1272  # SELECTs must return the same number of result columns.
  1273  #
  1274  #   All the other tests in this section use compound SELECTs created
  1275  #   using component SELECTs that do return the same number of columns.
  1276  #   So the tests here just show that it is an error to attempt otherwise.
  1277  #
  1278  drop_all_tables
  1279  do_execsql_test e_select-7.1.0 {
  1280    CREATE TABLE j1(a, b, c);
  1281    CREATE TABLE j2(e, f);
  1282    CREATE TABLE j3(g);
  1283  } {}
  1284  do_select_tests e_select-7.1 -error {
  1285    SELECTs to the left and right of %s do not have the same number of result columns
  1286  } {
  1287    1   "SELECT a, b FROM j1    UNION ALL SELECT g FROM j3"    {{UNION ALL}}
  1288    2   "SELECT *    FROM j1    UNION ALL SELECT * FROM j3"    {{UNION ALL}}
  1289    3   "SELECT a, b FROM j1    UNION ALL SELECT g FROM j3"    {{UNION ALL}}
  1290    4   "SELECT a, b FROM j1    UNION ALL SELECT * FROM j3,j2" {{UNION ALL}}
  1291    5   "SELECT *    FROM j3,j2 UNION ALL SELECT a, b FROM j1" {{UNION ALL}}
  1292  
  1293    6   "SELECT a, b FROM j1    UNION SELECT g FROM j3"        {UNION}
  1294    7   "SELECT *    FROM j1    UNION SELECT * FROM j3"        {UNION}
  1295    8   "SELECT a, b FROM j1    UNION SELECT g FROM j3"        {UNION}
  1296    9   "SELECT a, b FROM j1    UNION SELECT * FROM j3,j2"     {UNION}
  1297    10  "SELECT *    FROM j3,j2 UNION SELECT a, b FROM j1"     {UNION}
  1298  
  1299    11  "SELECT a, b FROM j1    INTERSECT SELECT g FROM j3"    {INTERSECT}
  1300    12  "SELECT *    FROM j1    INTERSECT SELECT * FROM j3"    {INTERSECT}
  1301    13  "SELECT a, b FROM j1    INTERSECT SELECT g FROM j3"    {INTERSECT}
  1302    14  "SELECT a, b FROM j1    INTERSECT SELECT * FROM j3,j2" {INTERSECT}
  1303    15  "SELECT *    FROM j3,j2 INTERSECT SELECT a, b FROM j1" {INTERSECT}
  1304  
  1305    16  "SELECT a, b FROM j1    EXCEPT SELECT g FROM j3"       {EXCEPT}
  1306    17  "SELECT *    FROM j1    EXCEPT SELECT * FROM j3"       {EXCEPT}
  1307    18  "SELECT a, b FROM j1    EXCEPT SELECT g FROM j3"       {EXCEPT}
  1308    19  "SELECT a, b FROM j1    EXCEPT SELECT * FROM j3,j2"    {EXCEPT}
  1309    20  "SELECT *    FROM j3,j2 EXCEPT SELECT a, b FROM j1"    {EXCEPT}
  1310  } 
  1311  
  1312  # EVIDENCE-OF: R-01450-11152 As the components of a compound SELECT must
  1313  # be simple SELECT statements, they may not contain ORDER BY or LIMIT
  1314  # clauses.
  1315  # 
  1316  foreach {tn select op1 op2} {
  1317    1   "SELECT * FROM j1 ORDER BY a UNION ALL SELECT * FROM j2,j3" 
  1318        {ORDER BY} {UNION ALL}
  1319    2   "SELECT count(*) FROM j1 ORDER BY 1 UNION ALL SELECT max(e) FROM j2"
  1320        {ORDER BY} {UNION ALL}
  1321    3   "SELECT count(*), * FROM j1 ORDER BY 1,2,3 UNION ALL SELECT *,* FROM j2"
  1322        {ORDER BY} {UNION ALL}
  1323    4   "SELECT * FROM j1 LIMIT 10 UNION ALL SELECT * FROM j2,j3" 
  1324        LIMIT {UNION ALL}
  1325    5   "SELECT * FROM j1 LIMIT 10 OFFSET 5 UNION ALL SELECT * FROM j2,j3" 
  1326        LIMIT {UNION ALL}
  1327    6   "SELECT a FROM j1 LIMIT (SELECT e FROM j2) UNION ALL SELECT g FROM j2,j3" 
  1328        LIMIT {UNION ALL}
  1329  
  1330    7   "SELECT * FROM j1 ORDER BY a UNION SELECT * FROM j2,j3" 
  1331        {ORDER BY} {UNION}
  1332    8   "SELECT count(*) FROM j1 ORDER BY 1 UNION SELECT max(e) FROM j2"
  1333        {ORDER BY} {UNION}
  1334    9   "SELECT count(*), * FROM j1 ORDER BY 1,2,3 UNION SELECT *,* FROM j2"
  1335        {ORDER BY} {UNION}
  1336    10  "SELECT * FROM j1 LIMIT 10 UNION SELECT * FROM j2,j3" 
  1337        LIMIT {UNION}
  1338    11  "SELECT * FROM j1 LIMIT 10 OFFSET 5 UNION SELECT * FROM j2,j3" 
  1339        LIMIT {UNION}
  1340    12  "SELECT a FROM j1 LIMIT (SELECT e FROM j2) UNION SELECT g FROM j2,j3" 
  1341        LIMIT {UNION}
  1342  
  1343    13  "SELECT * FROM j1 ORDER BY a EXCEPT SELECT * FROM j2,j3" 
  1344        {ORDER BY} {EXCEPT}
  1345    14  "SELECT count(*) FROM j1 ORDER BY 1 EXCEPT SELECT max(e) FROM j2"
  1346        {ORDER BY} {EXCEPT}
  1347    15  "SELECT count(*), * FROM j1 ORDER BY 1,2,3 EXCEPT SELECT *,* FROM j2"
  1348        {ORDER BY} {EXCEPT}
  1349    16  "SELECT * FROM j1 LIMIT 10 EXCEPT SELECT * FROM j2,j3" 
  1350        LIMIT {EXCEPT}
  1351    17  "SELECT * FROM j1 LIMIT 10 OFFSET 5 EXCEPT SELECT * FROM j2,j3" 
  1352        LIMIT {EXCEPT}
  1353    18  "SELECT a FROM j1 LIMIT (SELECT e FROM j2) EXCEPT SELECT g FROM j2,j3" 
  1354        LIMIT {EXCEPT}
  1355  
  1356    19  "SELECT * FROM j1 ORDER BY a INTERSECT SELECT * FROM j2,j3" 
  1357        {ORDER BY} {INTERSECT}
  1358    20  "SELECT count(*) FROM j1 ORDER BY 1 INTERSECT SELECT max(e) FROM j2"
  1359        {ORDER BY} {INTERSECT}
  1360    21  "SELECT count(*), * FROM j1 ORDER BY 1,2,3 INTERSECT SELECT *,* FROM j2"
  1361        {ORDER BY} {INTERSECT}
  1362    22  "SELECT * FROM j1 LIMIT 10 INTERSECT SELECT * FROM j2,j3" 
  1363        LIMIT {INTERSECT}
  1364    23  "SELECT * FROM j1 LIMIT 10 OFFSET 5 INTERSECT SELECT * FROM j2,j3" 
  1365        LIMIT {INTERSECT}
  1366    24  "SELECT a FROM j1 LIMIT (SELECT e FROM j2) INTERSECT SELECT g FROM j2,j3" 
  1367        LIMIT {INTERSECT}
  1368  } {
  1369    set err "$op1 clause should come after $op2 not before"
  1370    do_catchsql_test e_select-7.2.$tn $select [list 1 $err]
  1371  }
  1372  
  1373  # EVIDENCE-OF: R-45440-25633 ORDER BY and LIMIT clauses may only occur
  1374  # at the end of the entire compound SELECT, and then only if the final
  1375  # element of the compound is not a VALUES clause.
  1376  #
  1377  foreach {tn select} {
  1378    1   "SELECT * FROM j1 UNION ALL SELECT * FROM j2,j3 ORDER BY a"
  1379    2   "SELECT count(*) FROM j1 UNION ALL SELECT max(e) FROM j2 ORDER BY 1"
  1380    3   "SELECT count(*), * FROM j1 UNION ALL SELECT *,* FROM j2 ORDER BY 1,2,3"
  1381    4   "SELECT * FROM j1 UNION ALL SELECT * FROM j2,j3 LIMIT 10" 
  1382    5   "SELECT * FROM j1 UNION ALL SELECT * FROM j2,j3 LIMIT 10 OFFSET 5" 
  1383    6   "SELECT a FROM j1 UNION ALL SELECT g FROM j2,j3 LIMIT (SELECT 10)" 
  1384  
  1385    7   "SELECT * FROM j1 UNION SELECT * FROM j2,j3 ORDER BY a"
  1386    8   "SELECT count(*) FROM j1 UNION SELECT max(e) FROM j2 ORDER BY 1"
  1387    8b  "VALUES('8b') UNION SELECT max(e) FROM j2 ORDER BY 1"
  1388    9   "SELECT count(*), * FROM j1 UNION SELECT *,* FROM j2 ORDER BY 1,2,3"
  1389    10  "SELECT * FROM j1 UNION SELECT * FROM j2,j3 LIMIT 10" 
  1390    11  "SELECT * FROM j1 UNION SELECT * FROM j2,j3 LIMIT 10 OFFSET 5" 
  1391    12  "SELECT a FROM j1 UNION SELECT g FROM j2,j3 LIMIT (SELECT 10)" 
  1392  
  1393    13  "SELECT * FROM j1 EXCEPT SELECT * FROM j2,j3 ORDER BY a"
  1394    14  "SELECT count(*) FROM j1 EXCEPT SELECT max(e) FROM j2 ORDER BY 1"
  1395    15  "SELECT count(*), * FROM j1 EXCEPT SELECT *,* FROM j2 ORDER BY 1,2,3"
  1396    16  "SELECT * FROM j1 EXCEPT SELECT * FROM j2,j3 LIMIT 10" 
  1397    17  "SELECT * FROM j1 EXCEPT SELECT * FROM j2,j3 LIMIT 10 OFFSET 5" 
  1398    18  "SELECT a FROM j1 EXCEPT SELECT g FROM j2,j3 LIMIT (SELECT 10)" 
  1399  
  1400    19  "SELECT * FROM j1 INTERSECT SELECT * FROM j2,j3 ORDER BY a"
  1401    20  "SELECT count(*) FROM j1 INTERSECT SELECT max(e) FROM j2 ORDER BY 1"
  1402    21  "SELECT count(*), * FROM j1 INTERSECT SELECT *,* FROM j2 ORDER BY 1,2,3"
  1403    22  "SELECT * FROM j1 INTERSECT SELECT * FROM j2,j3 LIMIT 10" 
  1404    23  "SELECT * FROM j1 INTERSECT SELECT * FROM j2,j3 LIMIT 10 OFFSET 5" 
  1405    24  "SELECT a FROM j1 INTERSECT SELECT g FROM j2,j3 LIMIT (SELECT 10)" 
  1406  } {
  1407    do_test e_select-7.3.$tn { catch {execsql $select} msg } 0
  1408  }
  1409  foreach {tn select} {
  1410    50   "SELECT * FROM j1 ORDER BY 1 UNION ALL SELECT * FROM j2,j3"
  1411    51   "SELECT * FROM j1 LIMIT 1 UNION ALL SELECT * FROM j2,j3"
  1412    52   "SELECT count(*) FROM j1 UNION ALL VALUES(11) ORDER BY 1"
  1413    53   "SELECT count(*) FROM j1 UNION ALL VALUES(11) LIMIT 1"
  1414  } {
  1415    do_test e_select-7.3.$tn { catch {execsql $select} msg } 1
  1416  }
  1417  
  1418  # EVIDENCE-OF: R-08531-36543 A compound SELECT created using UNION ALL
  1419  # operator returns all the rows from the SELECT to the left of the UNION
  1420  # ALL operator, and all the rows from the SELECT to the right of it.
  1421  #
  1422  drop_all_tables
  1423  do_execsql_test e_select-7.4.0 {
  1424    CREATE TABLE q1(a TEXT, b INTEGER, c);
  1425    CREATE TABLE q2(d NUMBER, e BLOB);
  1426    CREATE TABLE q3(f REAL, g);
  1427  
  1428    INSERT INTO q1 VALUES(16, -87.66, NULL);
  1429    INSERT INTO q1 VALUES('legible', 94, -42.47);
  1430    INSERT INTO q1 VALUES('beauty', 36, NULL);
  1431  
  1432    INSERT INTO q2 VALUES('legible', 1);
  1433    INSERT INTO q2 VALUES('beauty', 2);
  1434    INSERT INTO q2 VALUES(-65.91, 4);
  1435    INSERT INTO q2 VALUES('emanating', -16.56);
  1436  
  1437    INSERT INTO q3 VALUES('beauty', 2);
  1438    INSERT INTO q3 VALUES('beauty', 2);
  1439  } {}
  1440  do_select_tests e_select-7.4 {
  1441    1   {SELECT a FROM q1 UNION ALL SELECT d FROM q2}
  1442        {16 legible beauty legible beauty -65.91 emanating}
  1443  
  1444    2   {SELECT * FROM q1 WHERE a=16 UNION ALL SELECT 'x', * FROM q2 WHERE oid=1}
  1445        {16 -87.66 {} x legible 1}
  1446  
  1447    3   {SELECT count(*) FROM q1 UNION ALL SELECT min(e) FROM q2} 
  1448        {3 -16.56}
  1449  
  1450    4   {SELECT * FROM q2 UNION ALL SELECT * FROM q3} 
  1451        {legible 1 beauty 2 -65.91 4 emanating -16.56 beauty 2 beauty 2}
  1452  } 
  1453  
  1454  # EVIDENCE-OF: R-20560-39162 The UNION operator works the same way as
  1455  # UNION ALL, except that duplicate rows are removed from the final
  1456  # result set.
  1457  #
  1458  do_select_tests e_select-7.5 {
  1459    1   {SELECT a FROM q1 UNION SELECT d FROM q2}
  1460        {-65.91 16 beauty emanating legible}
  1461  
  1462    2   {SELECT * FROM q1 WHERE a=16 UNION SELECT 'x', * FROM q2 WHERE oid=1}
  1463        {16 -87.66 {} x legible 1}
  1464  
  1465    3   {SELECT count(*) FROM q1 UNION SELECT min(e) FROM q2} 
  1466        {-16.56 3}
  1467  
  1468    4   {SELECT * FROM q2 UNION SELECT * FROM q3} 
  1469        {-65.91 4 beauty 2 emanating -16.56 legible 1}
  1470  } 
  1471  
  1472  # EVIDENCE-OF: R-45764-31737 The INTERSECT operator returns the
  1473  # intersection of the results of the left and right SELECTs.
  1474  #
  1475  do_select_tests e_select-7.6 {
  1476    1   {SELECT a FROM q1 INTERSECT SELECT d FROM q2} {beauty legible}
  1477    2   {SELECT * FROM q2 INTERSECT SELECT * FROM q3} {beauty 2}
  1478  }
  1479  
  1480  # EVIDENCE-OF: R-25787-28949 The EXCEPT operator returns the subset of
  1481  # rows returned by the left SELECT that are not also returned by the
  1482  # right-hand SELECT.
  1483  #
  1484  do_select_tests e_select-7.7 {
  1485    1   {SELECT a FROM q1 EXCEPT SELECT d FROM q2} {16}
  1486  
  1487    2   {SELECT * FROM q2 EXCEPT SELECT * FROM q3} 
  1488        {-65.91 4 emanating -16.56 legible 1}
  1489  }
  1490  
  1491  # EVIDENCE-OF: R-40729-56447 Duplicate rows are removed from the results
  1492  # of INTERSECT and EXCEPT operators before the result set is returned.
  1493  #
  1494  do_select_tests e_select-7.8 {
  1495    0   {SELECT * FROM q3} {beauty 2 beauty 2}
  1496  
  1497    1   {SELECT * FROM q3 INTERSECT SELECT * FROM q3} {beauty 2}
  1498    2   {SELECT * FROM q3 EXCEPT SELECT a,b FROM q1}  {beauty 2}
  1499  }
  1500  
  1501  # EVIDENCE-OF: R-46765-43362 For the purposes of determining duplicate
  1502  # rows for the results of compound SELECT operators, NULL values are
  1503  # considered equal to other NULL values and distinct from all non-NULL
  1504  # values.
  1505  #
  1506  db nullvalue null
  1507  do_select_tests e_select-7.9 {
  1508    1   {SELECT NULL UNION ALL SELECT NULL} {null null}
  1509    2   {SELECT NULL UNION     SELECT NULL} {null}
  1510    3   {SELECT NULL INTERSECT SELECT NULL} {null}
  1511    4   {SELECT NULL EXCEPT    SELECT NULL} {}
  1512  
  1513    5   {SELECT NULL UNION ALL SELECT 'ab'} {null ab}
  1514    6   {SELECT NULL UNION     SELECT 'ab'} {null ab}
  1515    7   {SELECT NULL INTERSECT SELECT 'ab'} {}
  1516    8   {SELECT NULL EXCEPT    SELECT 'ab'} {null}
  1517  
  1518    9   {SELECT NULL UNION ALL SELECT 0} {null 0}
  1519    10  {SELECT NULL UNION     SELECT 0} {null 0}
  1520    11  {SELECT NULL INTERSECT SELECT 0} {}
  1521    12  {SELECT NULL EXCEPT    SELECT 0} {null}
  1522  
  1523    13  {SELECT c FROM q1 UNION ALL SELECT g FROM q3} {null -42.47 null 2 2}
  1524    14  {SELECT c FROM q1 UNION     SELECT g FROM q3} {null -42.47 2}
  1525    15  {SELECT c FROM q1 INTERSECT SELECT g FROM q3} {}
  1526    16  {SELECT c FROM q1 EXCEPT    SELECT g FROM q3} {null -42.47}
  1527  }
  1528  db nullvalue {} 
  1529  
  1530  # EVIDENCE-OF: R-51232-50224 The collation sequence used to compare two
  1531  # text values is determined as if the columns of the left and right-hand
  1532  # SELECT statements were the left and right-hand operands of the equals
  1533  # (=) operator, except that greater precedence is not assigned to a
  1534  # collation sequence specified with the postfix COLLATE operator.
  1535  #
  1536  drop_all_tables
  1537  do_execsql_test e_select-7.10.0 {
  1538    CREATE TABLE y1(a COLLATE nocase, b COLLATE binary, c);
  1539    INSERT INTO y1 VALUES('Abc', 'abc', 'aBC');
  1540  } {}
  1541  do_select_tests e_select-7.10 {
  1542    1   {SELECT 'abc'                UNION SELECT 'ABC'} {ABC abc}
  1543    2   {SELECT 'abc' COLLATE nocase UNION SELECT 'ABC'} {ABC}
  1544    3   {SELECT 'abc'                UNION SELECT 'ABC' COLLATE nocase} {ABC}
  1545    4   {SELECT 'abc' COLLATE binary UNION SELECT 'ABC' COLLATE nocase} {ABC abc}
  1546    5   {SELECT 'abc' COLLATE nocase UNION SELECT 'ABC' COLLATE binary} {ABC}
  1547  
  1548    6   {SELECT a FROM y1 UNION SELECT b FROM y1}                {abc}
  1549    7   {SELECT b FROM y1 UNION SELECT a FROM y1}                {Abc abc}
  1550    8   {SELECT a FROM y1 UNION SELECT c FROM y1}                {aBC}
  1551  
  1552    9   {SELECT a FROM y1 UNION SELECT c COLLATE binary FROM y1} {aBC}
  1553  }
  1554  
  1555  # EVIDENCE-OF: R-32706-07403 No affinity transformations are applied to
  1556  # any values when comparing rows as part of a compound SELECT.
  1557  #
  1558  drop_all_tables
  1559  do_execsql_test e_select-7.10.0 {
  1560    CREATE TABLE w1(a TEXT, b NUMBER);
  1561    CREATE TABLE w2(a, b TEXT);
  1562  
  1563    INSERT INTO w1 VALUES('1', 4.1);
  1564    INSERT INTO w2 VALUES(1, 4.1);
  1565  } {}
  1566  
  1567  do_select_tests e_select-7.11 {
  1568    1  { SELECT a FROM w1 UNION SELECT a FROM w2 } {1 1}
  1569    2  { SELECT a FROM w2 UNION SELECT a FROM w1 } {1 1}
  1570    3  { SELECT b FROM w1 UNION SELECT b FROM w2 } {4.1 4.1}
  1571    4  { SELECT b FROM w2 UNION SELECT b FROM w1 } {4.1 4.1}
  1572  
  1573    5  { SELECT a FROM w1 INTERSECT SELECT a FROM w2 } {}
  1574    6  { SELECT a FROM w2 INTERSECT SELECT a FROM w1 } {}
  1575    7  { SELECT b FROM w1 INTERSECT SELECT b FROM w2 } {}
  1576    8  { SELECT b FROM w2 INTERSECT SELECT b FROM w1 } {}
  1577  
  1578    9  { SELECT a FROM w1 EXCEPT SELECT a FROM w2 } {1}
  1579    10 { SELECT a FROM w2 EXCEPT SELECT a FROM w1 } {1}
  1580    11 { SELECT b FROM w1 EXCEPT SELECT b FROM w2 } {4.1}
  1581    12 { SELECT b FROM w2 EXCEPT SELECT b FROM w1 } {4.1}
  1582  }
  1583  
  1584  
  1585  # EVIDENCE-OF: R-32562-20566 When three or more simple SELECTs are
  1586  # connected into a compound SELECT, they group from left to right. In
  1587  # other words, if "A", "B" and "C" are all simple SELECT statements, (A
  1588  # op B op C) is processed as ((A op B) op C).
  1589  #
  1590  #   e_select-7.12.1: Precedence of UNION vs. INTERSECT 
  1591  #   e_select-7.12.2: Precedence of UNION vs. UNION ALL 
  1592  #   e_select-7.12.3: Precedence of UNION vs. EXCEPT
  1593  #   e_select-7.12.4: Precedence of INTERSECT vs. UNION ALL 
  1594  #   e_select-7.12.5: Precedence of INTERSECT vs. EXCEPT
  1595  #   e_select-7.12.6: Precedence of UNION ALL vs. EXCEPT
  1596  #   e_select-7.12.7: Check that "a EXCEPT b EXCEPT c" is processed as 
  1597  #                   "(a EXCEPT b) EXCEPT c".
  1598  #
  1599  # The INTERSECT and EXCEPT operations are mutually commutative. So
  1600  # the e_select-7.12.5 test cases do not prove very much.
  1601  #
  1602  drop_all_tables
  1603  do_execsql_test e_select-7.12.0 {
  1604    CREATE TABLE t1(x);
  1605    INSERT INTO t1 VALUES(1);
  1606    INSERT INTO t1 VALUES(2);
  1607    INSERT INTO t1 VALUES(3);
  1608  } {}
  1609  foreach {tn select res} {
  1610    1a "(1,2) INTERSECT (1)   UNION     (3)"   {1 3}
  1611    1b "(3)   UNION     (1,2) INTERSECT (1)"   {1}
  1612  
  1613    2a "(1,2) UNION     (3)   UNION ALL (1)"   {1 2 3 1}
  1614    2b "(1)   UNION ALL (3)   UNION     (1,2)" {1 2 3}
  1615  
  1616    3a "(1,2) UNION     (3)   EXCEPT    (1)"   {2 3}
  1617    3b "(1,2) EXCEPT    (3)   UNION     (1)"   {1 2}
  1618  
  1619    4a "(1,2) INTERSECT (1)   UNION ALL (3)"   {1 3}
  1620    4b "(3)   UNION     (1,2) INTERSECT (1)"   {1}
  1621  
  1622    5a "(1,2) INTERSECT (2)   EXCEPT    (2)"   {}
  1623    5b "(2,3) EXCEPT    (2)   INTERSECT (2)"   {}
  1624  
  1625    6a "(2)   UNION ALL (2)   EXCEPT    (2)"   {}
  1626    6b "(2)   EXCEPT    (2)   UNION ALL (2)"   {2}
  1627  
  1628    7  "(2,3) EXCEPT    (2)   EXCEPT    (3)"   {}
  1629  } {
  1630    set select [string map {( {SELECT x FROM t1 WHERE x IN (}} $select]
  1631    do_execsql_test e_select-7.12.$tn $select [list {*}$res]
  1632  }
  1633  
  1634  
  1635  #-------------------------------------------------------------------------
  1636  # ORDER BY clauses
  1637  #
  1638  
  1639  drop_all_tables
  1640  do_execsql_test e_select-8.1.0 {
  1641    CREATE TABLE d1(x, y, z);
  1642  
  1643    INSERT INTO d1 VALUES(1, 2, 3);
  1644    INSERT INTO d1 VALUES(2, 5, -1);
  1645    INSERT INTO d1 VALUES(1, 2, 8);
  1646    INSERT INTO d1 VALUES(1, 2, 7);
  1647    INSERT INTO d1 VALUES(2, 4, 93);
  1648    INSERT INTO d1 VALUES(1, 2, -20);
  1649    INSERT INTO d1 VALUES(1, 4, 93);
  1650    INSERT INTO d1 VALUES(1, 5, -1);
  1651  
  1652    CREATE TABLE d2(a, b);
  1653    INSERT INTO d2 VALUES('gently', 'failings');
  1654    INSERT INTO d2 VALUES('commercials', 'bathrobe');
  1655    INSERT INTO d2 VALUES('iterate', 'sexton');
  1656    INSERT INTO d2 VALUES('babied', 'charitableness');
  1657    INSERT INTO d2 VALUES('solemnness', 'annexed');
  1658    INSERT INTO d2 VALUES('rejoicing', 'liabilities');
  1659    INSERT INTO d2 VALUES('pragmatist', 'guarded');
  1660    INSERT INTO d2 VALUES('barked', 'interrupted');
  1661    INSERT INTO d2 VALUES('reemphasizes', 'reply');
  1662    INSERT INTO d2 VALUES('lad', 'relenting');
  1663  } {}
  1664  
  1665  # EVIDENCE-OF: R-44988-41064 Rows are first sorted based on the results
  1666  # of evaluating the left-most expression in the ORDER BY list, then ties
  1667  # are broken by evaluating the second left-most expression and so on.
  1668  #
  1669  do_select_tests e_select-8.1 {
  1670    1  "SELECT * FROM d1 ORDER BY x, y, z" {
  1671       1 2 -20    1 2 3    1 2 7    1 2 8    
  1672       1 4  93    1 5 -1   2 4 93   2 5 -1
  1673    }
  1674  }
  1675  
  1676  # EVIDENCE-OF: R-06617-54588 Each ORDER BY expression may be optionally
  1677  # followed by one of the keywords ASC (smaller values are returned
  1678  # first) or DESC (larger values are returned first).
  1679  #
  1680  #   Test cases e_select-8.2.* test the above.
  1681  #
  1682  # EVIDENCE-OF: R-18705-33393 If neither ASC or DESC are specified, rows
  1683  # are sorted in ascending (smaller values first) order by default.
  1684  #
  1685  #   Test cases e_select-8.3.* test the above. All 8.3 test cases are
  1686  #   copies of 8.2 test cases with the explicit "ASC" removed.
  1687  #
  1688  do_select_tests e_select-8 {
  1689    2.1  "SELECT * FROM d1 ORDER BY x ASC, y ASC, z ASC" {
  1690       1 2 -20    1 2 3    1 2 7    1 2 8    
  1691       1 4  93    1 5 -1   2 4 93   2 5 -1
  1692    }
  1693    2.2  "SELECT * FROM d1 ORDER BY x DESC, y DESC, z DESC" {
  1694       2 5 -1     2 4 93   1 5 -1   1 4  93    
  1695       1 2 8      1 2 7    1 2 3    1 2 -20    
  1696    }
  1697    2.3 "SELECT * FROM d1 ORDER BY x DESC, y ASC, z DESC" {
  1698       2 4 93   2 5 -1     1 2 8      1 2 7    
  1699       1 2 3    1 2 -20    1 4  93    1 5 -1   
  1700    }
  1701    2.4  "SELECT * FROM d1 ORDER BY x DESC, y ASC, z ASC" {
  1702       2 4 93   2 5 -1     1 2 -20    1 2 3    
  1703       1 2 7    1 2 8      1 4  93    1 5 -1   
  1704    }
  1705  
  1706    3.1  "SELECT * FROM d1 ORDER BY x, y, z" {
  1707       1 2 -20    1 2 3    1 2 7    1 2 8    
  1708       1 4  93    1 5 -1   2 4 93   2 5 -1
  1709    }
  1710    3.3  "SELECT * FROM d1 ORDER BY x DESC, y, z DESC" {
  1711       2 4 93   2 5 -1     1 2 8      1 2 7    
  1712       1 2 3    1 2 -20    1 4  93    1 5 -1   
  1713    }
  1714    3.4 "SELECT * FROM d1 ORDER BY x DESC, y, z" {
  1715       2 4 93   2 5 -1     1 2 -20    1 2 3    
  1716       1 2 7    1 2 8      1 4  93    1 5 -1   
  1717    }
  1718  }
  1719  
  1720  # EVIDENCE-OF: R-29779-04281 If the ORDER BY expression is a constant
  1721  # integer K then the expression is considered an alias for the K-th
  1722  # column of the result set (columns are numbered from left to right
  1723  # starting with 1).
  1724  #
  1725  do_select_tests e_select-8.4 {
  1726    1  "SELECT * FROM d1 ORDER BY 1 ASC, 2 ASC, 3 ASC" {
  1727       1 2 -20    1 2 3    1 2 7    1 2 8    
  1728       1 4  93    1 5 -1   2 4 93   2 5 -1
  1729    }
  1730    2  "SELECT * FROM d1 ORDER BY 1 DESC, 2 DESC, 3 DESC" {
  1731       2 5 -1     2 4 93   1 5 -1   1 4  93    
  1732       1 2 8      1 2 7    1 2 3    1 2 -20    
  1733    }
  1734    3 "SELECT * FROM d1 ORDER BY 1 DESC, 2 ASC, 3 DESC" {
  1735       2 4 93   2 5 -1     1 2 8      1 2 7    
  1736       1 2 3    1 2 -20    1 4  93    1 5 -1   
  1737    }
  1738    4  "SELECT * FROM d1 ORDER BY 1 DESC, 2 ASC, 3 ASC" {
  1739       2 4 93   2 5 -1     1 2 -20    1 2 3    
  1740       1 2 7    1 2 8      1 4  93    1 5 -1   
  1741    }
  1742    5  "SELECT * FROM d1 ORDER BY 1, 2, 3" {
  1743       1 2 -20    1 2 3    1 2 7    1 2 8    
  1744       1 4  93    1 5 -1   2 4 93   2 5 -1
  1745    }
  1746    6  "SELECT * FROM d1 ORDER BY 1 DESC, 2, 3 DESC" {
  1747       2 4 93   2 5 -1     1 2 8      1 2 7    
  1748       1 2 3    1 2 -20    1 4  93    1 5 -1   
  1749    }
  1750    7  "SELECT * FROM d1 ORDER BY 1 DESC, 2, 3" {
  1751       2 4 93   2 5 -1     1 2 -20    1 2 3    
  1752       1 2 7    1 2 8      1 4  93    1 5 -1   
  1753    }
  1754    8  "SELECT z, x FROM d1 ORDER BY 2" {
  1755       /# 1    # 1    # 1   # 1 
  1756        # 1    # 1    # 2   # 2/
  1757    }
  1758    9  "SELECT z, x FROM d1 ORDER BY 1" {
  1759       /-20 1  -1 #   -1 #   3 1
  1760       7 1     8 1   93 #   93 #/   
  1761    }
  1762  }
  1763  
  1764  # EVIDENCE-OF: R-63286-51977 If the ORDER BY expression is an identifier
  1765  # that corresponds to the alias of one of the output columns, then the
  1766  # expression is considered an alias for that column.
  1767  #
  1768  do_select_tests e_select-8.5 {
  1769    1   "SELECT z+1 AS abc FROM d1 ORDER BY abc" {
  1770      -19 0 0 4 8 9 94 94
  1771    }
  1772    2   "SELECT z+1 AS abc FROM d1 ORDER BY abc DESC" {
  1773      94 94 9 8 4 0 0 -19
  1774    }
  1775    3  "SELECT z AS x, x AS z FROM d1 ORDER BY z" {
  1776      /# 1    # 1    # 1    # 1    # 1    # 1    # 2    # 2/
  1777    }
  1778    4  "SELECT z AS x, x AS z FROM d1 ORDER BY x" {
  1779      /-20 1    -1 #    -1 #    3 1    7 1    8 1    93 #    93 #/
  1780    }
  1781  }
  1782  
  1783  # EVIDENCE-OF: R-65068-27207 Otherwise, if the ORDER BY expression is
  1784  # any other expression, it is evaluated and the returned value used to
  1785  # order the output rows.
  1786  #
  1787  # EVIDENCE-OF: R-03421-57988 If the SELECT statement is a simple SELECT,
  1788  # then an ORDER BY may contain any arbitrary expressions.
  1789  #
  1790  do_select_tests e_select-8.6 {
  1791    1   "SELECT * FROM d1 ORDER BY x+y+z" {
  1792      1 2 -20    1 5 -1    1 2 3    2 5 -1 
  1793      1 2 7      1 2 8     1 4 93   2 4 93
  1794    }
  1795    2   "SELECT * FROM d1 ORDER BY x*z" {
  1796      1 2 -20    2 5 -1    1 5 -1    1 2 3 
  1797      1 2 7      1 2 8     1 4 93    2 4 93
  1798    }
  1799    3   "SELECT * FROM d1 ORDER BY y*z" {
  1800      1 2 -20    2 5 -1    1 5 -1    1 2 3 
  1801      1 2 7      1 2 8     2 4 93    1 4 93
  1802    }
  1803  }
  1804  
  1805  # EVIDENCE-OF: R-28853-08147 However, if the SELECT is a compound
  1806  # SELECT, then ORDER BY expressions that are not aliases to output
  1807  # columns must be exactly the same as an expression used as an output
  1808  # column.
  1809  #
  1810  do_select_tests e_select-8.7.1 -error {
  1811    %s ORDER BY term does not match any column in the result set
  1812  } {
  1813    1   "SELECT x FROM d1 UNION ALL SELECT a FROM d2 ORDER BY x*z"        1st
  1814    2   "SELECT x,z FROM d1 UNION ALL SELECT a,b FROM d2 ORDER BY x, x/z" 2nd
  1815  } 
  1816  
  1817  do_select_tests e_select-8.7.2 {
  1818    1   "SELECT x*z FROM d1 UNION ALL SELECT a FROM d2 ORDER BY x*z" {
  1819      -20 -2 -1 3 7 8 93 186 babied barked commercials gently 
  1820      iterate lad pragmatist reemphasizes rejoicing solemnness
  1821    }
  1822    2   "SELECT x, x/z FROM d1 UNION ALL SELECT a,b FROM d2 ORDER BY x, x/z" {
  1823      1 -1 1 0 1 0 1 0 1 0 1 0 2 -2 2 0 
  1824      babied charitableness barked interrupted commercials bathrobe gently
  1825      failings iterate sexton lad relenting pragmatist guarded reemphasizes reply
  1826      rejoicing liabilities solemnness annexed
  1827    }
  1828  } 
  1829  
  1830  do_execsql_test e_select-8.8.0 {
  1831    CREATE TABLE d3(a);
  1832    INSERT INTO d3 VALUES('text');
  1833    INSERT INTO d3 VALUES(14.1);
  1834    INSERT INTO d3 VALUES(13);
  1835    INSERT INTO d3 VALUES(X'78787878');
  1836    INSERT INTO d3 VALUES(15);
  1837    INSERT INTO d3 VALUES(12.9);
  1838    INSERT INTO d3 VALUES(null);
  1839  
  1840    CREATE TABLE d4(x COLLATE nocase);
  1841    INSERT INTO d4 VALUES('abc');
  1842    INSERT INTO d4 VALUES('ghi');
  1843    INSERT INTO d4 VALUES('DEF');
  1844    INSERT INTO d4 VALUES('JKL');
  1845  } {}
  1846  
  1847  # EVIDENCE-OF: R-10883-17697 For the purposes of sorting rows, values
  1848  # are compared in the same way as for comparison expressions.
  1849  #
  1850  #   The following tests verify that values of different types are sorted
  1851  #   correctly, and that mixed real and integer values are compared properly.
  1852  #
  1853  do_execsql_test e_select-8.8.1 {
  1854    SELECT a FROM d3 ORDER BY a
  1855  } {{} 12.9 13 14.1 15 text xxxx}
  1856  do_execsql_test e_select-8.8.2 {
  1857    SELECT a FROM d3 ORDER BY a DESC
  1858  } {xxxx text 15 14.1 13 12.9 {}}
  1859  
  1860  
  1861  # EVIDENCE-OF: R-64199-22471 If the ORDER BY expression is assigned a
  1862  # collation sequence using the postfix COLLATE operator, then the
  1863  # specified collation sequence is used.
  1864  #
  1865  do_execsql_test e_select-8.9.1 {
  1866    SELECT x FROM d4 ORDER BY 1 COLLATE binary
  1867  } {DEF JKL abc ghi}
  1868  do_execsql_test e_select-8.9.2 {
  1869    SELECT x COLLATE binary FROM d4 ORDER BY 1 COLLATE nocase
  1870  } {abc DEF ghi JKL}
  1871  
  1872  # EVIDENCE-OF: R-09398-26102 Otherwise, if the ORDER BY expression is 
  1873  # an alias to an expression that has been assigned a collation sequence 
  1874  # using the postfix COLLATE operator, then the collation sequence 
  1875  # assigned to the aliased expression is used.
  1876  #
  1877  #   In the test 8.10.2, the only result-column expression has no alias. So the
  1878  #   ORDER BY expression is not a reference to it and therefore does not inherit
  1879  #   the collation sequence. In test 8.10.3, "x" is the alias (as well as the
  1880  #   column name), so the ORDER BY expression is interpreted as an alias and the
  1881  #   collation sequence attached to the result column is used for sorting.
  1882  #
  1883  do_execsql_test e_select-8.10.1 {
  1884    SELECT x COLLATE binary FROM d4 ORDER BY 1
  1885  } {DEF JKL abc ghi}
  1886  do_execsql_test e_select-8.10.2 {
  1887    SELECT x COLLATE binary FROM d4 ORDER BY x
  1888  } {abc DEF ghi JKL}
  1889  do_execsql_test e_select-8.10.3 {
  1890    SELECT x COLLATE binary AS x FROM d4 ORDER BY x
  1891  } {DEF JKL abc ghi}
  1892  
  1893  # EVIDENCE-OF: R-27301-09658 Otherwise, if the ORDER BY expression is a
  1894  # column or an alias of an expression that is a column, then the default
  1895  # collation sequence for the column is used.
  1896  #
  1897  do_execsql_test e_select-8.11.1 {
  1898    SELECT x AS y FROM d4 ORDER BY y
  1899  } {abc DEF ghi JKL}
  1900  do_execsql_test e_select-8.11.2 {
  1901    SELECT x||'' FROM d4 ORDER BY x
  1902  } {abc DEF ghi JKL}
  1903  
  1904  # EVIDENCE-OF: R-49925-55905 Otherwise, the BINARY collation sequence is
  1905  # used.
  1906  #
  1907  do_execsql_test e_select-8.12.1 {
  1908    SELECT x FROM d4 ORDER BY x||''
  1909  } {DEF JKL abc ghi}
  1910  
  1911  # EVIDENCE-OF: R-44130-32593 If an ORDER BY expression is not an integer
  1912  # alias, then SQLite searches the left-most SELECT in the compound for a
  1913  # result column that matches either the second or third rules above. If
  1914  # a match is found, the search stops and the expression is handled as an
  1915  # alias for the result column that it has been matched against.
  1916  # Otherwise, the next SELECT to the right is tried, and so on.
  1917  #
  1918  do_execsql_test e_select-8.13.0 {
  1919    CREATE TABLE d5(a, b);
  1920    CREATE TABLE d6(c, d);
  1921    CREATE TABLE d7(e, f);
  1922   
  1923    INSERT INTO d5 VALUES(1, 'f');
  1924    INSERT INTO d6 VALUES(2, 'e');
  1925    INSERT INTO d7 VALUES(3, 'd');
  1926    INSERT INTO d5 VALUES(4, 'c');
  1927    INSERT INTO d6 VALUES(5, 'b');
  1928    INSERT INTO d7 VALUES(6, 'a');
  1929  
  1930    CREATE TABLE d8(x COLLATE nocase);
  1931    CREATE TABLE d9(y COLLATE nocase);
  1932  
  1933    INSERT INTO d8 VALUES('a');
  1934    INSERT INTO d9 VALUES('B');
  1935    INSERT INTO d8 VALUES('c');
  1936    INSERT INTO d9 VALUES('D');
  1937  } {}
  1938  do_select_tests e_select-8.13 {
  1939    1   { SELECT a FROM d5 UNION ALL SELECT c FROM d6 UNION ALL SELECT e FROM d7
  1940           ORDER BY a
  1941        } {1 2 3 4 5 6}
  1942    2   { SELECT a FROM d5 UNION ALL SELECT c FROM d6 UNION ALL SELECT e FROM d7
  1943           ORDER BY c
  1944        } {1 2 3 4 5 6}
  1945    3   { SELECT a FROM d5 UNION ALL SELECT c FROM d6 UNION ALL SELECT e FROM d7
  1946           ORDER BY e
  1947        } {1 2 3 4 5 6}
  1948    4   { SELECT a FROM d5 UNION ALL SELECT c FROM d6 UNION ALL SELECT e FROM d7
  1949           ORDER BY 1
  1950        } {1 2 3 4 5 6}
  1951  
  1952    5   { SELECT a, b FROM d5 UNION ALL SELECT b, a FROM d5 ORDER BY b } 
  1953        {f 1   c 4   4 c   1 f}
  1954    6   { SELECT a, b FROM d5 UNION ALL SELECT b, a FROM d5 ORDER BY 2 } 
  1955        {f 1   c 4   4 c   1 f}
  1956  
  1957    7   { SELECT a, b FROM d5 UNION ALL SELECT b, a FROM d5 ORDER BY a } 
  1958        {1 f   4 c   c 4   f 1}
  1959    8   { SELECT a, b FROM d5 UNION ALL SELECT b, a FROM d5 ORDER BY 1 } 
  1960        {1 f   4 c   c 4   f 1}
  1961  
  1962    9   { SELECT a, b FROM d5 UNION ALL SELECT b, a+1 FROM d5 ORDER BY a+1 } 
  1963        {f 2   c 5   4 c   1 f}
  1964    10  { SELECT a, b FROM d5 UNION ALL SELECT b, a+1 FROM d5 ORDER BY 2 } 
  1965        {f 2   c 5   4 c   1 f}
  1966  
  1967    11  { SELECT a+1, b FROM d5 UNION ALL SELECT b, a+1 FROM d5 ORDER BY a+1 } 
  1968        {2 f   5 c   c 5   f 2}
  1969    12  { SELECT a+1, b FROM d5 UNION ALL SELECT b, a+1 FROM d5 ORDER BY 1 } 
  1970        {2 f   5 c   c 5   f 2}
  1971  } 
  1972  
  1973  # EVIDENCE-OF: R-39265-04070 If no matching expression can be found in
  1974  # the result columns of any constituent SELECT, it is an error.
  1975  #
  1976  do_select_tests e_select-8.14 -error {
  1977    %s ORDER BY term does not match any column in the result set
  1978  } {
  1979    1   { SELECT a FROM d5 UNION SELECT c FROM d6 ORDER BY a+1 }          1st
  1980    2   { SELECT a FROM d5 UNION SELECT c FROM d6 ORDER BY a, a+1 }       2nd
  1981    3   { SELECT * FROM d5 INTERSECT SELECT * FROM d6 ORDER BY 'hello' }  1st
  1982    4   { SELECT * FROM d5 INTERSECT SELECT * FROM d6 ORDER BY blah    }  1st
  1983    5   { SELECT * FROM d5 INTERSECT SELECT * FROM d6 ORDER BY c,d,c+d }  3rd
  1984    6   { SELECT * FROM d5 EXCEPT SELECT * FROM d7 ORDER BY 1,2,b,a/b  }  4th
  1985  } 
  1986  
  1987  # EVIDENCE-OF: R-03407-11483 Each term of the ORDER BY clause is
  1988  # processed separately and may be matched against result columns from
  1989  # different SELECT statements in the compound.
  1990  # 
  1991  do_select_tests e_select-8.15 {
  1992    1  { SELECT a, b FROM d5 UNION ALL SELECT c-1, d FROM d6 ORDER BY a, d }
  1993       {1 e   1 f   4 b   4 c}
  1994    2  { SELECT a, b FROM d5 UNION ALL SELECT c-1, d FROM d6 ORDER BY c-1, b }
  1995       {1 e   1 f   4 b   4 c}
  1996    3  { SELECT a, b FROM d5 UNION ALL SELECT c-1, d FROM d6 ORDER BY 1, 2 }
  1997       {1 e   1 f   4 b   4 c}
  1998  } 
  1999  
  2000  
  2001  #-------------------------------------------------------------------------
  2002  # Tests related to statements made about the LIMIT/OFFSET clause.
  2003  #
  2004  do_execsql_test e_select-9.0 {
  2005    CREATE TABLE f1(a, b);
  2006    INSERT INTO f1 VALUES(26, 'z');
  2007    INSERT INTO f1 VALUES(25, 'y');
  2008    INSERT INTO f1 VALUES(24, 'x');
  2009    INSERT INTO f1 VALUES(23, 'w');
  2010    INSERT INTO f1 VALUES(22, 'v');
  2011    INSERT INTO f1 VALUES(21, 'u');
  2012    INSERT INTO f1 VALUES(20, 't');
  2013    INSERT INTO f1 VALUES(19, 's');
  2014    INSERT INTO f1 VALUES(18, 'r');
  2015    INSERT INTO f1 VALUES(17, 'q');
  2016    INSERT INTO f1 VALUES(16, 'p');
  2017    INSERT INTO f1 VALUES(15, 'o');
  2018    INSERT INTO f1 VALUES(14, 'n');
  2019    INSERT INTO f1 VALUES(13, 'm');
  2020    INSERT INTO f1 VALUES(12, 'l');
  2021    INSERT INTO f1 VALUES(11, 'k');
  2022    INSERT INTO f1 VALUES(10, 'j');
  2023    INSERT INTO f1 VALUES(9, 'i');
  2024    INSERT INTO f1 VALUES(8, 'h');
  2025    INSERT INTO f1 VALUES(7, 'g');
  2026    INSERT INTO f1 VALUES(6, 'f');
  2027    INSERT INTO f1 VALUES(5, 'e');
  2028    INSERT INTO f1 VALUES(4, 'd');
  2029    INSERT INTO f1 VALUES(3, 'c');
  2030    INSERT INTO f1 VALUES(2, 'b');
  2031    INSERT INTO f1 VALUES(1, 'a');
  2032  } {}
  2033  
  2034  # EVIDENCE-OF: R-30481-56627 Any scalar expression may be used in the
  2035  # LIMIT clause, so long as it evaluates to an integer or a value that
  2036  # can be losslessly converted to an integer.
  2037  #
  2038  do_select_tests e_select-9.1 {
  2039    1  { SELECT b FROM f1 ORDER BY a LIMIT 5 } {a b c d e}
  2040    2  { SELECT b FROM f1 ORDER BY a LIMIT 2+3 } {a b c d e}
  2041    3  { SELECT b FROM f1 ORDER BY a LIMIT (SELECT a FROM f1 WHERE b = 'e') } 
  2042       {a b c d e}
  2043    4  { SELECT b FROM f1 ORDER BY a LIMIT 5.0 } {a b c d e}
  2044    5  { SELECT b FROM f1 ORDER BY a LIMIT '5' } {a b c d e}
  2045  }
  2046  
  2047  # EVIDENCE-OF: R-46155-47219 If the expression evaluates to a NULL value
  2048  # or any other value that cannot be losslessly converted to an integer,
  2049  # an error is returned.
  2050  #
  2051  
  2052  do_select_tests e_select-9.2 -error "datatype mismatch" {
  2053    1  { SELECT b FROM f1 ORDER BY a LIMIT 'hello' } {}
  2054    2  { SELECT b FROM f1 ORDER BY a LIMIT NULL } {}
  2055    3  { SELECT b FROM f1 ORDER BY a LIMIT X'ABCD' } {}
  2056    4  { SELECT b FROM f1 ORDER BY a LIMIT 5.1 } {}
  2057    5  { SELECT b FROM f1 ORDER BY a LIMIT (SELECT group_concat(b) FROM f1) } {}
  2058  } 
  2059  
  2060  # EVIDENCE-OF: R-03014-26414 If the LIMIT expression evaluates to a
  2061  # negative value, then there is no upper bound on the number of rows
  2062  # returned.
  2063  #
  2064  do_select_tests e_select-9.4 {
  2065    1  { SELECT b FROM f1 ORDER BY a LIMIT -1 } 
  2066       {a b c d e f g h i j k l m n o p q r s t u v w x y z}
  2067    2  { SELECT b FROM f1 ORDER BY a LIMIT length('abc')-100 } 
  2068       {a b c d e f g h i j k l m n o p q r s t u v w x y z}
  2069    3  { SELECT b FROM f1 ORDER BY a LIMIT (SELECT count(*) FROM f1)/2 - 14 }
  2070       {a b c d e f g h i j k l m n o p q r s t u v w x y z}
  2071  }
  2072  
  2073  # EVIDENCE-OF: R-33750-29536 Otherwise, the SELECT returns the first N
  2074  # rows of its result set only, where N is the value that the LIMIT
  2075  # expression evaluates to.
  2076  #
  2077  do_select_tests e_select-9.5 {
  2078    1  { SELECT b FROM f1 ORDER BY a LIMIT 0 } {}
  2079    2  { SELECT b FROM f1 ORDER BY a DESC LIMIT 4 } {z y x w}
  2080    3  { SELECT b FROM f1 ORDER BY a DESC LIMIT 8 } {z y x w v u t s}
  2081    4  { SELECT b FROM f1 ORDER BY a DESC LIMIT '12.0' } {z y x w v u t s r q p o}
  2082  }
  2083  
  2084  # EVIDENCE-OF: R-54935-19057 Or, if the SELECT statement would return
  2085  # less than N rows without a LIMIT clause, then the entire result set is
  2086  # returned.
  2087  #
  2088  do_select_tests e_select-9.6 {
  2089    1  { SELECT b FROM f1 WHERE a>21 ORDER BY a LIMIT 10 } {v w x y z}
  2090    2  { SELECT count(*) FROM f1 GROUP BY a/5 ORDER BY 1 LIMIT 10 } {2 4 5 5 5 5}
  2091  } 
  2092  
  2093  
  2094  # EVIDENCE-OF: R-24188-24349 The expression attached to the optional
  2095  # OFFSET clause that may follow a LIMIT clause must also evaluate to an
  2096  # integer, or a value that can be losslessly converted to an integer.
  2097  #
  2098  foreach {tn select} {
  2099    1  { SELECT b FROM f1 ORDER BY a LIMIT 2 OFFSET 'hello' } 
  2100    2  { SELECT b FROM f1 ORDER BY a LIMIT 2 OFFSET NULL } 
  2101    3  { SELECT b FROM f1 ORDER BY a LIMIT 2 OFFSET X'ABCD' } 
  2102    4  { SELECT b FROM f1 ORDER BY a LIMIT 2 OFFSET 5.1 } 
  2103    5  { SELECT b FROM f1 ORDER BY a 
  2104         LIMIT 2 OFFSET (SELECT group_concat(b) FROM f1) 
  2105    } 
  2106  } {
  2107    do_catchsql_test e_select-9.7.$tn $select {1 {datatype mismatch}}
  2108  }
  2109  
  2110  # EVIDENCE-OF: R-20467-43422 If an expression has an OFFSET clause, then
  2111  # the first M rows are omitted from the result set returned by the
  2112  # SELECT statement and the next N rows are returned, where M and N are
  2113  # the values that the OFFSET and LIMIT clauses evaluate to,
  2114  # respectively.
  2115  #
  2116  do_select_tests e_select-9.8 {
  2117    1  { SELECT b FROM f1 ORDER BY a LIMIT 10 OFFSET 5} {f g h i j k l m n o}
  2118    2  { SELECT b FROM f1 ORDER BY a LIMIT 2+3 OFFSET 10} {k l m n o}
  2119    3  { SELECT b FROM f1 ORDER BY a 
  2120         LIMIT  (SELECT a FROM f1 WHERE b='j') 
  2121         OFFSET (SELECT a FROM f1 WHERE b='b') 
  2122       } {c d e f g h i j k l}
  2123    4  { SELECT b FROM f1 ORDER BY a LIMIT '5' OFFSET 3.0 } {d e f g h}
  2124    5  { SELECT b FROM f1 ORDER BY a LIMIT '5' OFFSET 0 } {a b c d e}
  2125    6  { SELECT b FROM f1 ORDER BY a LIMIT 0 OFFSET 10 } {}
  2126    7  { SELECT b FROM f1 ORDER BY a LIMIT 3 OFFSET '1'||'5' } {p q r}
  2127  }
  2128  
  2129  # EVIDENCE-OF: R-34648-44875 Or, if the SELECT would return less than
  2130  # M+N rows if it did not have a LIMIT clause, then the first M rows are
  2131  # skipped and the remaining rows (if any) are returned.
  2132  #
  2133  do_select_tests e_select-9.9 {
  2134    1  { SELECT b FROM f1 ORDER BY a LIMIT 10 OFFSET 20} {u v w x y z}
  2135    2  { SELECT a FROM f1 ORDER BY a DESC LIMIT 100 OFFSET 18+4} {4 3 2 1}
  2136  }
  2137  
  2138  
  2139  # EVIDENCE-OF: R-23293-62447 If the OFFSET clause evaluates to a
  2140  # negative value, the results are the same as if it had evaluated to
  2141  # zero.
  2142  #
  2143  do_select_tests e_select-9.10 {
  2144    1  { SELECT b FROM f1 ORDER BY a LIMIT 5 OFFSET -1 } {a b c d e}
  2145    2  { SELECT b FROM f1 ORDER BY a LIMIT 5 OFFSET -500 } {a b c d e}
  2146    3  { SELECT b FROM f1 ORDER BY a LIMIT 5 OFFSET 0  } {a b c d e}
  2147  } 
  2148  
  2149  # EVIDENCE-OF: R-19509-40356 Instead of a separate OFFSET clause, the
  2150  # LIMIT clause may specify two scalar expressions separated by a comma.
  2151  #
  2152  # EVIDENCE-OF: R-33788-46243 In this case, the first expression is used
  2153  # as the OFFSET expression and the second as the LIMIT expression.
  2154  #
  2155  do_select_tests e_select-9.11 {
  2156    1  { SELECT b FROM f1 ORDER BY a LIMIT 5, 10 } {f g h i j k l m n o}
  2157    2  { SELECT b FROM f1 ORDER BY a LIMIT 10, 2+3 } {k l m n o}
  2158    3  { SELECT b FROM f1 ORDER BY a 
  2159         LIMIT (SELECT a FROM f1 WHERE b='b'), (SELECT a FROM f1 WHERE b='j') 
  2160       } {c d e f g h i j k l}
  2161    4  { SELECT b FROM f1 ORDER BY a LIMIT 3.0, '5' } {d e f g h}
  2162    5  { SELECT b FROM f1 ORDER BY a LIMIT 0, '5' } {a b c d e}
  2163    6  { SELECT b FROM f1 ORDER BY a LIMIT 10, 0 } {}
  2164    7  { SELECT b FROM f1 ORDER BY a LIMIT '1'||'5', 3 } {p q r}
  2165  
  2166    8  { SELECT b FROM f1 ORDER BY a LIMIT 20, 10 } {u v w x y z}
  2167    9  { SELECT a FROM f1 ORDER BY a DESC LIMIT 18+4, 100 } {4 3 2 1}
  2168  
  2169    10 { SELECT b FROM f1 ORDER BY a LIMIT -1, 5 } {a b c d e}
  2170    11 { SELECT b FROM f1 ORDER BY a LIMIT -500, 5 } {a b c d e}
  2171    12 { SELECT b FROM f1 ORDER BY a LIMIT 0, 5 } {a b c d e}
  2172  }
  2173  
  2174  finish_test