gitlab.com/aquachain/aquachain@v1.17.16-rc3.0.20221018032414-e3ddf1e1c055/p2p/rlpx.go (about)

     1  // Copyright 2018 The aquachain Authors
     2  // This file is part of the aquachain library.
     3  //
     4  // The aquachain library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The aquachain library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the aquachain library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package p2p
    18  
    19  import (
    20  	"bytes"
    21  	"crypto/aes"
    22  	"crypto/cipher"
    23  	"crypto/ecdsa"
    24  	"crypto/elliptic"
    25  	"crypto/hmac"
    26  	"crypto/rand"
    27  	"encoding/binary"
    28  	"errors"
    29  	"fmt"
    30  	"hash"
    31  	"io"
    32  	"io/ioutil"
    33  	mrand "math/rand"
    34  	"net"
    35  	"sync"
    36  	"time"
    37  
    38  	"github.com/golang/snappy"
    39  	"gitlab.com/aquachain/aquachain/crypto"
    40  	"gitlab.com/aquachain/aquachain/crypto/ecies"
    41  	"gitlab.com/aquachain/aquachain/crypto/sha3"
    42  	"gitlab.com/aquachain/aquachain/p2p/discover"
    43  	"gitlab.com/aquachain/aquachain/rlp"
    44  )
    45  
    46  const (
    47  	maxUint24 = ^uint32(0) >> 8
    48  
    49  	sskLen = 16 // ecies.MaxSharedKeyLength(pubKey) / 2
    50  	sigLen = 65 // elliptic S256
    51  	pubLen = 64 // 512 bit pubkey in uncompressed representation without format byte
    52  	shaLen = 32 // hash length (for nonce etc)
    53  
    54  	authMsgLen  = sigLen + shaLen + pubLen + shaLen + 1
    55  	authRespLen = pubLen + shaLen + 1
    56  
    57  	eciesOverhead = 65 /* pubkey */ + 16 /* IV */ + 32 /* MAC */
    58  
    59  	encAuthMsgLen  = authMsgLen + eciesOverhead  // size of encrypted pre-EIP-8 initiator handshake
    60  	encAuthRespLen = authRespLen + eciesOverhead // size of encrypted pre-EIP-8 handshake reply
    61  
    62  	// total timeout for encryption handshake and protocol
    63  	// handshake in both directions.
    64  	handshakeTimeout = 5 * time.Second
    65  
    66  	// This is the timeout for sending the disconnect reason.
    67  	// This is shorter than the usual timeout because we don't want
    68  	// to wait if the connection is known to be bad anyway.
    69  	discWriteTimeout = 1 * time.Second
    70  )
    71  
    72  // errPlainMessageTooLarge is returned if a decompressed message length exceeds
    73  // the allowed 24 bits (i.e. length >= 16MB).
    74  var errPlainMessageTooLarge = errors.New("message length >= 16MB")
    75  
    76  // rlpx is the transport protocol used by actual (non-test) connections.
    77  // It wraps the frame encoder with locks and read/write deadlines.
    78  type rlpx struct {
    79  	fd net.Conn
    80  
    81  	rmu, wmu sync.Mutex
    82  	rw       *rlpxFrameRW
    83  }
    84  
    85  func newRLPX(fd net.Conn) transport {
    86  	fd.SetDeadline(time.Now().Add(handshakeTimeout))
    87  	return &rlpx{fd: fd}
    88  }
    89  
    90  func (t *rlpx) ReadMsg() (Msg, error) {
    91  	t.rmu.Lock()
    92  	defer t.rmu.Unlock()
    93  	t.fd.SetReadDeadline(time.Now().Add(frameReadTimeout))
    94  	return t.rw.ReadMsg()
    95  }
    96  
    97  func (t *rlpx) WriteMsg(msg Msg) error {
    98  	t.wmu.Lock()
    99  	defer t.wmu.Unlock()
   100  	t.fd.SetWriteDeadline(time.Now().Add(frameWriteTimeout))
   101  	return t.rw.WriteMsg(msg)
   102  }
   103  
   104  func (t *rlpx) close(err error) {
   105  	t.wmu.Lock()
   106  	defer t.wmu.Unlock()
   107  	// Tell the remote end why we're disconnecting if possible.
   108  	if t.rw != nil {
   109  		if r, ok := err.(DiscReason); ok && r != DiscNetworkError {
   110  			// rlpx tries to send DiscReason to disconnected peer
   111  			// if the connection is net.Pipe (in-memory simulation)
   112  			// it hangs forever, since net.Pipe does not implement
   113  			// a write deadline. Because of this only try to send
   114  			// the disconnect reason message if there is no error.
   115  			if err := t.fd.SetWriteDeadline(time.Now().Add(discWriteTimeout)); err == nil {
   116  				SendItems(t.rw, discMsg, r)
   117  			}
   118  		}
   119  	}
   120  	t.fd.Close()
   121  }
   122  
   123  // doEncHandshake runs the protocol handshake using authenticated
   124  // messages. the protocol handshake is the first authenticated message
   125  // and also verifies whether the encryption handshake 'worked' and the
   126  // remote side actually provided the right public key.
   127  func (t *rlpx) doProtoHandshake(our *protoHandshake) (their *protoHandshake, err error) {
   128  	// Writing our handshake happens concurrently, we prefer
   129  	// returning the handshake read error. If the remote side
   130  	// disconnects us early with a valid reason, we should return it
   131  	// as the error so it can be tracked elsewhere.
   132  	werr := make(chan error, 1)
   133  	go func() { werr <- Send(t.rw, handshakeMsg, our) }()
   134  	if their, err = readProtocolHandshake(t.rw, our); err != nil {
   135  		<-werr // make sure the write terminates too
   136  		return nil, err
   137  	}
   138  	if err := <-werr; err != nil {
   139  		return nil, fmt.Errorf("write error: %v", err)
   140  	}
   141  	// If the protocol version supports Snappy encoding, upgrade immediately
   142  	t.rw.snappy = their.Version >= snappyProtocolVersion
   143  
   144  	return their, nil
   145  }
   146  
   147  func readProtocolHandshake(rw MsgReader, our *protoHandshake) (*protoHandshake, error) {
   148  	msg, err := rw.ReadMsg()
   149  	if err != nil {
   150  		return nil, err
   151  	}
   152  	if msg.Size > baseProtocolMaxMsgSize {
   153  		return nil, fmt.Errorf("message too big")
   154  	}
   155  	if msg.Code == discMsg {
   156  		// Disconnect before protocol handshake is valid according to the
   157  		// spec and we send it ourself if the posthanshake checks fail.
   158  		// We can't return the reason directly, though, because it is echoed
   159  		// back otherwise. Wrap it in a string instead.
   160  		var reason [1]DiscReason
   161  		rlp.Decode(msg.Payload, &reason)
   162  		return nil, reason[0]
   163  	}
   164  	if msg.Code != handshakeMsg {
   165  		return nil, fmt.Errorf("expected handshake, got %x", msg.Code)
   166  	}
   167  	var hs protoHandshake
   168  	if err := msg.Decode(&hs); err != nil {
   169  		return nil, err
   170  	}
   171  	if (hs.ID == discover.NodeID{}) {
   172  		return nil, DiscInvalidIdentity
   173  	}
   174  	return &hs, nil
   175  }
   176  
   177  func (t *rlpx) doEncHandshake(prv *ecdsa.PrivateKey, dial *discover.Node) (discover.NodeID, error) {
   178  	var (
   179  		sec secrets
   180  		err error
   181  	)
   182  	if dial == nil {
   183  		sec, err = receiverEncHandshake(t.fd, prv)
   184  	} else {
   185  		sec, err = initiatorEncHandshake(t.fd, prv, dial.ID)
   186  	}
   187  	if err != nil {
   188  		return discover.NodeID{}, err
   189  	}
   190  	t.wmu.Lock()
   191  	t.rw = newRLPXFrameRW(t.fd, sec)
   192  	t.wmu.Unlock()
   193  	return sec.RemoteID, nil
   194  }
   195  
   196  // encHandshake contains the state of the encryption handshake.
   197  type encHandshake struct {
   198  	initiator bool
   199  	remoteID  discover.NodeID
   200  
   201  	remotePub            *ecies.PublicKey  // remote-pubk
   202  	initNonce, respNonce []byte            // nonce
   203  	randomPrivKey        *ecies.PrivateKey // ecdhe-random
   204  	remoteRandomPub      *ecies.PublicKey  // ecdhe-random-pubk
   205  }
   206  
   207  // secrets represents the connection secrets
   208  // which are negotiated during the encryption handshake.
   209  type secrets struct {
   210  	RemoteID              discover.NodeID
   211  	AES, MAC              []byte
   212  	EgressMAC, IngressMAC hash.Hash
   213  	Token                 []byte
   214  }
   215  
   216  // RLPx v4 handshake auth (defined in EIP-8).
   217  type authMsgV4 struct {
   218  	gotPlain bool // whether read packet had plain format.
   219  
   220  	Signature       [sigLen]byte
   221  	InitiatorPubkey [pubLen]byte
   222  	Nonce           [shaLen]byte
   223  	Version         uint
   224  
   225  	// Ignore additional fields (forward-compatibility)
   226  	Rest []rlp.RawValue `rlp:"tail"`
   227  }
   228  
   229  // RLPx v4 handshake response (defined in EIP-8).
   230  type authRespV4 struct {
   231  	RandomPubkey [pubLen]byte
   232  	Nonce        [shaLen]byte
   233  	Version      uint
   234  
   235  	// Ignore additional fields (forward-compatibility)
   236  	Rest []rlp.RawValue `rlp:"tail"`
   237  }
   238  
   239  // secrets is called after the handshake is completed.
   240  // It extracts the connection secrets from the handshake values.
   241  func (h *encHandshake) secrets(auth, authResp []byte) (secrets, error) {
   242  	ecdheSecret, err := h.randomPrivKey.GenerateShared(h.remoteRandomPub, sskLen, sskLen)
   243  	if err != nil {
   244  		return secrets{}, err
   245  	}
   246  
   247  	// derive base secrets from ephemeral key agreement
   248  	sharedSecret := crypto.Keccak256(ecdheSecret, crypto.Keccak256(h.respNonce, h.initNonce))
   249  	aesSecret := crypto.Keccak256(ecdheSecret, sharedSecret)
   250  	s := secrets{
   251  		RemoteID: h.remoteID,
   252  		AES:      aesSecret,
   253  		MAC:      crypto.Keccak256(ecdheSecret, aesSecret),
   254  	}
   255  
   256  	// setup sha3 instances for the MACs
   257  	mac1 := sha3.NewKeccak256()
   258  	mac1.Write(xor(s.MAC, h.respNonce))
   259  	mac1.Write(auth)
   260  	mac2 := sha3.NewKeccak256()
   261  	mac2.Write(xor(s.MAC, h.initNonce))
   262  	mac2.Write(authResp)
   263  	if h.initiator {
   264  		s.EgressMAC, s.IngressMAC = mac1, mac2
   265  	} else {
   266  		s.EgressMAC, s.IngressMAC = mac2, mac1
   267  	}
   268  
   269  	return s, nil
   270  }
   271  
   272  // staticSharedSecret returns the static shared secret, the result
   273  // of key agreement between the local and remote static node key.
   274  func (h *encHandshake) staticSharedSecret(prv *ecdsa.PrivateKey) ([]byte, error) {
   275  	return ecies.ImportECDSA(prv).GenerateShared(h.remotePub, sskLen, sskLen)
   276  }
   277  
   278  // initiatorEncHandshake negotiates a session token on conn.
   279  // it should be called on the dialing side of the connection.
   280  //
   281  // prv is the local client's private key.
   282  func initiatorEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey, remoteID discover.NodeID) (s secrets, err error) {
   283  	h := &encHandshake{initiator: true, remoteID: remoteID}
   284  	authMsg, err := h.makeAuthMsg(prv)
   285  	if err != nil {
   286  		return s, err
   287  	}
   288  	authPacket, err := sealEIP8(authMsg, h)
   289  	if err != nil {
   290  		return s, err
   291  	}
   292  	if _, err = conn.Write(authPacket); err != nil {
   293  		return s, err
   294  	}
   295  
   296  	authRespMsg := new(authRespV4)
   297  	authRespPacket, err := readHandshakeMsg(authRespMsg, encAuthRespLen, prv, conn)
   298  	if err != nil {
   299  		return s, err
   300  	}
   301  	if err := h.handleAuthResp(authRespMsg); err != nil {
   302  		return s, err
   303  	}
   304  	return h.secrets(authPacket, authRespPacket)
   305  }
   306  
   307  // makeAuthMsg creates the initiator handshake message.
   308  func (h *encHandshake) makeAuthMsg(prv *ecdsa.PrivateKey) (*authMsgV4, error) {
   309  	rpub, err := h.remoteID.Pubkey()
   310  	if err != nil {
   311  		return nil, fmt.Errorf("bad remoteID: %v", err)
   312  	}
   313  	h.remotePub = ecies.ImportECDSAPublic(rpub)
   314  	// Generate random initiator nonce.
   315  	h.initNonce = make([]byte, shaLen)
   316  	if _, err := rand.Read(h.initNonce); err != nil {
   317  		return nil, err
   318  	}
   319  	// Generate random keypair to for ECDH.
   320  	h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, crypto.S256(), nil)
   321  	if err != nil {
   322  		return nil, err
   323  	}
   324  
   325  	// Sign known message: static-shared-secret ^ nonce
   326  	token, err := h.staticSharedSecret(prv)
   327  	if err != nil {
   328  		return nil, err
   329  	}
   330  	signed := xor(token, h.initNonce)
   331  	signature, err := crypto.Sign(signed, h.randomPrivKey.ExportECDSA())
   332  	if err != nil {
   333  		return nil, err
   334  	}
   335  
   336  	msg := new(authMsgV4)
   337  	copy(msg.Signature[:], signature)
   338  	copy(msg.InitiatorPubkey[:], crypto.FromECDSAPub(&prv.PublicKey)[1:])
   339  	copy(msg.Nonce[:], h.initNonce)
   340  	msg.Version = 4
   341  	return msg, nil
   342  }
   343  
   344  func (h *encHandshake) handleAuthResp(msg *authRespV4) (err error) {
   345  	h.respNonce = msg.Nonce[:]
   346  	h.remoteRandomPub, err = importPublicKey(msg.RandomPubkey[:])
   347  	return err
   348  }
   349  
   350  // receiverEncHandshake negotiates a session token on conn.
   351  // it should be called on the listening side of the connection.
   352  //
   353  // prv is the local client's private key.
   354  func receiverEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey) (s secrets, err error) {
   355  	authMsg := new(authMsgV4)
   356  	authPacket, err := readHandshakeMsg(authMsg, encAuthMsgLen, prv, conn)
   357  	if err != nil {
   358  		return s, err
   359  	}
   360  	h := new(encHandshake)
   361  	if err := h.handleAuthMsg(authMsg, prv); err != nil {
   362  		return s, err
   363  	}
   364  
   365  	authRespMsg, err := h.makeAuthResp()
   366  	if err != nil {
   367  		return s, err
   368  	}
   369  	var authRespPacket []byte
   370  	if authMsg.gotPlain {
   371  		authRespPacket, err = authRespMsg.sealPlain(h)
   372  	} else {
   373  		authRespPacket, err = sealEIP8(authRespMsg, h)
   374  	}
   375  	if err != nil {
   376  		return s, err
   377  	}
   378  	if _, err = conn.Write(authRespPacket); err != nil {
   379  		return s, err
   380  	}
   381  	return h.secrets(authPacket, authRespPacket)
   382  }
   383  
   384  func (h *encHandshake) handleAuthMsg(msg *authMsgV4, prv *ecdsa.PrivateKey) error {
   385  	// Import the remote identity.
   386  	h.initNonce = msg.Nonce[:]
   387  	h.remoteID = msg.InitiatorPubkey
   388  	rpub, err := h.remoteID.Pubkey()
   389  	if err != nil {
   390  		return fmt.Errorf("bad remoteID: %#v", err)
   391  	}
   392  	h.remotePub = ecies.ImportECDSAPublic(rpub)
   393  
   394  	// Generate random keypair for ECDH.
   395  	// If a private key is already set, use it instead of generating one (for testing).
   396  	if h.randomPrivKey == nil {
   397  		h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, crypto.S256(), nil)
   398  		if err != nil {
   399  			return err
   400  		}
   401  	}
   402  
   403  	// Check the signature.
   404  	token, err := h.staticSharedSecret(prv)
   405  	if err != nil {
   406  		return err
   407  	}
   408  	signedMsg := xor(token, h.initNonce)
   409  	remoteRandomPub, err := crypto.Ecrecover(signedMsg, msg.Signature[:])
   410  	if err != nil {
   411  		return err
   412  	}
   413  	h.remoteRandomPub, _ = importPublicKey(remoteRandomPub)
   414  	return nil
   415  }
   416  
   417  func (h *encHandshake) makeAuthResp() (msg *authRespV4, err error) {
   418  	// Generate random nonce.
   419  	h.respNonce = make([]byte, shaLen)
   420  	if _, err = rand.Read(h.respNonce); err != nil {
   421  		return nil, err
   422  	}
   423  
   424  	msg = new(authRespV4)
   425  	copy(msg.Nonce[:], h.respNonce)
   426  	copy(msg.RandomPubkey[:], exportPubkey(&h.randomPrivKey.PublicKey))
   427  	msg.Version = 4
   428  	return msg, nil
   429  }
   430  
   431  func (msg *authMsgV4) decodePlain(input []byte) {
   432  	n := copy(msg.Signature[:], input)
   433  	n += shaLen // skip sha3(initiator-ephemeral-pubk)
   434  	n += copy(msg.InitiatorPubkey[:], input[n:])
   435  	copy(msg.Nonce[:], input[n:])
   436  	msg.Version = 4
   437  	msg.gotPlain = true
   438  }
   439  
   440  func (msg *authRespV4) sealPlain(hs *encHandshake) ([]byte, error) {
   441  	buf := make([]byte, authRespLen)
   442  	n := copy(buf, msg.RandomPubkey[:])
   443  	copy(buf[n:], msg.Nonce[:])
   444  	return ecies.Encrypt(rand.Reader, hs.remotePub, buf, nil, nil)
   445  }
   446  
   447  func (msg *authRespV4) decodePlain(input []byte) {
   448  	n := copy(msg.RandomPubkey[:], input)
   449  	copy(msg.Nonce[:], input[n:])
   450  	msg.Version = 4
   451  }
   452  
   453  var padSpace = make([]byte, 300)
   454  
   455  func sealEIP8(msg interface{}, h *encHandshake) ([]byte, error) {
   456  	buf := new(bytes.Buffer)
   457  	if err := rlp.Encode(buf, msg); err != nil {
   458  		return nil, err
   459  	}
   460  	// pad with random amount of data. the amount needs to be at least 100 bytes to make
   461  	// the message distinguishable from pre-EIP-8 handshakes.
   462  	pad := padSpace[:mrand.Intn(len(padSpace)-100)+100]
   463  	buf.Write(pad)
   464  	prefix := make([]byte, 2)
   465  	binary.BigEndian.PutUint16(prefix, uint16(buf.Len()+eciesOverhead))
   466  
   467  	enc, err := ecies.Encrypt(rand.Reader, h.remotePub, buf.Bytes(), nil, prefix)
   468  	return append(prefix, enc...), err
   469  }
   470  
   471  type plainDecoder interface {
   472  	decodePlain([]byte)
   473  }
   474  
   475  func readHandshakeMsg(msg plainDecoder, plainSize int, prv *ecdsa.PrivateKey, r io.Reader) ([]byte, error) {
   476  	buf := make([]byte, plainSize)
   477  	if _, err := io.ReadFull(r, buf); err != nil {
   478  		return buf, err
   479  	}
   480  	// Attempt decoding pre-EIP-8 "plain" format.
   481  	key := ecies.ImportECDSA(prv)
   482  	if dec, err := key.Decrypt(buf, nil, nil); err == nil {
   483  		msg.decodePlain(dec)
   484  		return buf, nil
   485  	}
   486  	// Could be EIP-8 format, try that.
   487  	prefix := buf[:2]
   488  	size := binary.BigEndian.Uint16(prefix)
   489  	if size < uint16(plainSize) {
   490  		return buf, fmt.Errorf("size underflow, need at least %d bytes", plainSize)
   491  	}
   492  	buf = append(buf, make([]byte, size-uint16(plainSize)+2)...)
   493  	if _, err := io.ReadFull(r, buf[plainSize:]); err != nil {
   494  		return buf, err
   495  	}
   496  	dec, err := key.Decrypt(buf[2:], nil, prefix)
   497  	if err != nil {
   498  		return buf, err
   499  	}
   500  	// Can't use rlp.DecodeBytes here because it rejects
   501  	// trailing data (forward-compatibility).
   502  	s := rlp.NewStream(bytes.NewReader(dec), 0)
   503  	return buf, s.Decode(msg)
   504  }
   505  
   506  // importPublicKey unmarshals 512 bit public keys.
   507  func importPublicKey(pubKey []byte) (*ecies.PublicKey, error) {
   508  	var pubKey65 []byte
   509  	switch len(pubKey) {
   510  	case 64:
   511  		// add 'uncompressed key' flag
   512  		pubKey65 = append([]byte{0x04}, pubKey...)
   513  	case 65:
   514  		pubKey65 = pubKey
   515  	default:
   516  		return nil, fmt.Errorf("invalid public key length %v (expect 64/65)", len(pubKey))
   517  	}
   518  	// TODO: fewer pointless conversions
   519  	pub := crypto.ToECDSAPub(pubKey65)
   520  	if pub.X == nil {
   521  		return nil, fmt.Errorf("invalid public key")
   522  	}
   523  	return ecies.ImportECDSAPublic(pub), nil
   524  }
   525  
   526  func exportPubkey(pub *ecies.PublicKey) []byte {
   527  	if pub == nil {
   528  		panic("nil pubkey")
   529  	}
   530  	return elliptic.Marshal(pub.Curve, pub.X, pub.Y)[1:]
   531  }
   532  
   533  func xor(one, other []byte) (xor []byte) {
   534  	xor = make([]byte, len(one))
   535  	for i := 0; i < len(one); i++ {
   536  		xor[i] = one[i] ^ other[i]
   537  	}
   538  	return xor
   539  }
   540  
   541  var (
   542  	// this is used in place of actual frame header data.
   543  	// TODO: replace this when Msg contains the protocol type code.
   544  	zeroHeader = []byte{0xC2, 0x80, 0x80}
   545  	// sixteen zero bytes
   546  	zero16 = make([]byte, 16)
   547  )
   548  
   549  // rlpxFrameRW implements a simplified version of RLPx framing.
   550  // chunked messages are not supported and all headers are equal to
   551  // zeroHeader.
   552  //
   553  // rlpxFrameRW is not safe for concurrent use from multiple goroutines.
   554  type rlpxFrameRW struct {
   555  	conn io.ReadWriter
   556  	enc  cipher.Stream
   557  	dec  cipher.Stream
   558  
   559  	macCipher  cipher.Block
   560  	egressMAC  hash.Hash
   561  	ingressMAC hash.Hash
   562  
   563  	snappy bool
   564  }
   565  
   566  func newRLPXFrameRW(conn io.ReadWriter, s secrets) *rlpxFrameRW {
   567  	macc, err := aes.NewCipher(s.MAC)
   568  	if err != nil {
   569  		panic("invalid MAC secret: " + err.Error())
   570  	}
   571  	encc, err := aes.NewCipher(s.AES)
   572  	if err != nil {
   573  		panic("invalid AES secret: " + err.Error())
   574  	}
   575  	// we use an all-zeroes IV for AES because the key used
   576  	// for encryption is ephemeral.
   577  	iv := make([]byte, encc.BlockSize())
   578  	return &rlpxFrameRW{
   579  		conn:       conn,
   580  		enc:        cipher.NewCTR(encc, iv),
   581  		dec:        cipher.NewCTR(encc, iv),
   582  		macCipher:  macc,
   583  		egressMAC:  s.EgressMAC,
   584  		ingressMAC: s.IngressMAC,
   585  	}
   586  }
   587  
   588  func (rw *rlpxFrameRW) WriteMsg(msg Msg) error {
   589  	ptype, _ := rlp.EncodeToBytes(msg.Code)
   590  
   591  	// if snappy is enabled, compress message now
   592  	if rw.snappy {
   593  		if msg.Size > maxUint24 {
   594  			return errPlainMessageTooLarge
   595  		}
   596  		payload, _ := ioutil.ReadAll(msg.Payload)
   597  		payload = snappy.Encode(nil, payload)
   598  
   599  		msg.Payload = bytes.NewReader(payload)
   600  		msg.Size = uint32(len(payload))
   601  	}
   602  	// write header
   603  	headbuf := make([]byte, 32)
   604  	fsize := uint32(len(ptype)) + msg.Size
   605  	if fsize > maxUint24 {
   606  		return errors.New("message size overflows uint24")
   607  	}
   608  	putInt24(fsize, headbuf) // TODO: check overflow
   609  	copy(headbuf[3:], zeroHeader)
   610  	rw.enc.XORKeyStream(headbuf[:16], headbuf[:16]) // first half is now encrypted
   611  
   612  	// write header MAC
   613  	copy(headbuf[16:], updateMAC(rw.egressMAC, rw.macCipher, headbuf[:16]))
   614  	if _, err := rw.conn.Write(headbuf); err != nil {
   615  		return err
   616  	}
   617  
   618  	// write encrypted frame, updating the egress MAC hash with
   619  	// the data written to conn.
   620  	tee := cipher.StreamWriter{S: rw.enc, W: io.MultiWriter(rw.conn, rw.egressMAC)}
   621  	if _, err := tee.Write(ptype); err != nil {
   622  		return err
   623  	}
   624  	if _, err := io.Copy(tee, msg.Payload); err != nil {
   625  		return err
   626  	}
   627  	if padding := fsize % 16; padding > 0 {
   628  		if _, err := tee.Write(zero16[:16-padding]); err != nil {
   629  			return err
   630  		}
   631  	}
   632  
   633  	// write frame MAC. egress MAC hash is up to date because
   634  	// frame content was written to it as well.
   635  	fmacseed := rw.egressMAC.Sum(nil)
   636  	mac := updateMAC(rw.egressMAC, rw.macCipher, fmacseed)
   637  	_, err := rw.conn.Write(mac)
   638  	return err
   639  }
   640  
   641  func (rw *rlpxFrameRW) ReadMsg() (msg Msg, err error) {
   642  	// read the header
   643  	headbuf := make([]byte, 32)
   644  	if _, err := io.ReadFull(rw.conn, headbuf); err != nil {
   645  		return msg, err
   646  	}
   647  	// verify header mac
   648  	shouldMAC := updateMAC(rw.ingressMAC, rw.macCipher, headbuf[:16])
   649  	if !hmac.Equal(shouldMAC, headbuf[16:]) {
   650  		return msg, errors.New("bad header MAC")
   651  	}
   652  	rw.dec.XORKeyStream(headbuf[:16], headbuf[:16]) // first half is now decrypted
   653  	fsize := readInt24(headbuf)
   654  	// ignore protocol type for now
   655  
   656  	// read the frame content
   657  	var rsize = fsize // frame size rounded up to 16 byte boundary
   658  	if padding := fsize % 16; padding > 0 {
   659  		rsize += 16 - padding
   660  	}
   661  	framebuf := make([]byte, rsize)
   662  	if _, err := io.ReadFull(rw.conn, framebuf); err != nil {
   663  		return msg, err
   664  	}
   665  
   666  	// read and validate frame MAC. we can re-use headbuf for that.
   667  	rw.ingressMAC.Write(framebuf)
   668  	fmacseed := rw.ingressMAC.Sum(nil)
   669  	if _, err := io.ReadFull(rw.conn, headbuf[:16]); err != nil {
   670  		return msg, err
   671  	}
   672  	shouldMAC = updateMAC(rw.ingressMAC, rw.macCipher, fmacseed)
   673  	if !hmac.Equal(shouldMAC, headbuf[:16]) {
   674  		return msg, errors.New("bad frame MAC")
   675  	}
   676  
   677  	// decrypt frame content
   678  	rw.dec.XORKeyStream(framebuf, framebuf)
   679  
   680  	// decode message code
   681  	content := bytes.NewReader(framebuf[:fsize])
   682  	if err := rlp.Decode(content, &msg.Code); err != nil {
   683  		return msg, err
   684  	}
   685  	msg.Size = uint32(content.Len())
   686  	msg.Payload = content
   687  
   688  	// if snappy is enabled, verify and decompress message
   689  	if rw.snappy {
   690  		payload, err := ioutil.ReadAll(msg.Payload)
   691  		if err != nil {
   692  			return msg, err
   693  		}
   694  		size, err := snappy.DecodedLen(payload)
   695  		if err != nil {
   696  			return msg, err
   697  		}
   698  		if size > int(maxUint24) {
   699  			return msg, errPlainMessageTooLarge
   700  		}
   701  		payload, err = snappy.Decode(nil, payload)
   702  		if err != nil {
   703  			return msg, err
   704  		}
   705  		msg.Size, msg.Payload = uint32(size), bytes.NewReader(payload)
   706  	}
   707  	return msg, nil
   708  }
   709  
   710  // updateMAC reseeds the given hash with encrypted seed.
   711  // it returns the first 16 bytes of the hash sum after seeding.
   712  func updateMAC(mac hash.Hash, block cipher.Block, seed []byte) []byte {
   713  	aesbuf := make([]byte, aes.BlockSize)
   714  	block.Encrypt(aesbuf, mac.Sum(nil))
   715  	for i := range aesbuf {
   716  		aesbuf[i] ^= seed[i]
   717  	}
   718  	mac.Write(aesbuf)
   719  	return mac.Sum(nil)[:16]
   720  }
   721  
   722  func readInt24(b []byte) uint32 {
   723  	return uint32(b[2]) | uint32(b[1])<<8 | uint32(b[0])<<16
   724  }
   725  
   726  func putInt24(v uint32, b []byte) {
   727  	b[0] = byte(v >> 16)
   728  	b[1] = byte(v >> 8)
   729  	b[2] = byte(v)
   730  }