gitlab.com/flarenetwork/coreth@v0.1.1/core/vm/contracts.go (about) 1 // (c) 2019-2020, Ava Labs, Inc. 2 // 3 // This file is a derived work, based on the go-ethereum library whose original 4 // notices appear below. 5 // 6 // It is distributed under a license compatible with the licensing terms of the 7 // original code from which it is derived. 8 // 9 // Much love to the original authors for their work. 10 // ********** 11 // Copyright 2014 The go-ethereum Authors 12 // This file is part of the go-ethereum library. 13 // 14 // The go-ethereum library is free software: you can redistribute it and/or modify 15 // it under the terms of the GNU Lesser General Public License as published by 16 // the Free Software Foundation, either version 3 of the License, or 17 // (at your option) any later version. 18 // 19 // The go-ethereum library is distributed in the hope that it will be useful, 20 // but WITHOUT ANY WARRANTY; without even the implied warranty of 21 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 22 // GNU Lesser General Public License for more details. 23 // 24 // You should have received a copy of the GNU Lesser General Public License 25 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 26 27 package vm 28 29 import ( 30 "crypto/sha256" 31 "encoding/binary" 32 "errors" 33 "math/big" 34 35 "github.com/ethereum/go-ethereum/common" 36 "github.com/ethereum/go-ethereum/common/math" 37 "github.com/ethereum/go-ethereum/crypto" 38 "github.com/ethereum/go-ethereum/crypto/blake2b" 39 "github.com/ethereum/go-ethereum/crypto/bls12381" 40 "github.com/ethereum/go-ethereum/crypto/bn256" 41 "gitlab.com/flarenetwork/coreth/params" 42 43 //lint:ignore SA1019 Needed for precompile 44 "golang.org/x/crypto/ripemd160" 45 ) 46 47 // PrecompiledContract is the basic interface for native Go contracts. The implementation 48 // requires a deterministic gas count based on the input size of the Run method of the 49 // contract. 50 type PrecompiledContract interface { 51 RequiredGas(input []byte) uint64 // RequiredPrice calculates the contract gas use 52 Run(input []byte) ([]byte, error) // Run runs the precompiled contract 53 } 54 55 // PrecompiledContractsHomestead contains the default set of pre-compiled Ethereum 56 // contracts used in the Frontier and Homestead releases. 57 var PrecompiledContractsHomestead = map[common.Address]StatefulPrecompiledContract{ 58 common.BytesToAddress([]byte{1}): newWrappedPrecompiledContract(&ecrecover{}), 59 common.BytesToAddress([]byte{2}): newWrappedPrecompiledContract(&sha256hash{}), 60 common.BytesToAddress([]byte{3}): newWrappedPrecompiledContract(&ripemd160hash{}), 61 common.BytesToAddress([]byte{4}): newWrappedPrecompiledContract(&dataCopy{}), 62 } 63 64 // PrecompiledContractsByzantium contains the default set of pre-compiled Ethereum 65 // contracts used in the Byzantium release. 66 var PrecompiledContractsByzantium = map[common.Address]StatefulPrecompiledContract{ 67 common.BytesToAddress([]byte{1}): newWrappedPrecompiledContract(&ecrecover{}), 68 common.BytesToAddress([]byte{2}): newWrappedPrecompiledContract(&sha256hash{}), 69 common.BytesToAddress([]byte{3}): newWrappedPrecompiledContract(&ripemd160hash{}), 70 common.BytesToAddress([]byte{4}): newWrappedPrecompiledContract(&dataCopy{}), 71 common.BytesToAddress([]byte{5}): newWrappedPrecompiledContract(&bigModExp{eip2565: false}), 72 common.BytesToAddress([]byte{6}): newWrappedPrecompiledContract(&bn256AddByzantium{}), 73 common.BytesToAddress([]byte{7}): newWrappedPrecompiledContract(&bn256ScalarMulByzantium{}), 74 common.BytesToAddress([]byte{8}): newWrappedPrecompiledContract(&bn256PairingByzantium{}), 75 } 76 77 // PrecompiledContractsIstanbul contains the default set of pre-compiled Ethereum 78 // contracts used in the Istanbul release. 79 var PrecompiledContractsIstanbul = map[common.Address]StatefulPrecompiledContract{ 80 common.BytesToAddress([]byte{1}): newWrappedPrecompiledContract(&ecrecover{}), 81 common.BytesToAddress([]byte{2}): newWrappedPrecompiledContract(&sha256hash{}), 82 common.BytesToAddress([]byte{3}): newWrappedPrecompiledContract(&ripemd160hash{}), 83 common.BytesToAddress([]byte{4}): newWrappedPrecompiledContract(&dataCopy{}), 84 common.BytesToAddress([]byte{5}): newWrappedPrecompiledContract(&bigModExp{eip2565: false}), 85 common.BytesToAddress([]byte{6}): newWrappedPrecompiledContract(&bn256AddIstanbul{}), 86 common.BytesToAddress([]byte{7}): newWrappedPrecompiledContract(&bn256ScalarMulIstanbul{}), 87 common.BytesToAddress([]byte{8}): newWrappedPrecompiledContract(&bn256PairingIstanbul{}), 88 common.BytesToAddress([]byte{9}): newWrappedPrecompiledContract(&blake2F{}), 89 } 90 91 // PrecompiledContractsApricotPhase2 contains the default set of pre-compiled Ethereum 92 // contracts used in the Apricot Phase 2 release. 93 var PrecompiledContractsApricotPhase2 = map[common.Address]StatefulPrecompiledContract{ 94 common.BytesToAddress([]byte{1}): newWrappedPrecompiledContract(&ecrecover{}), 95 common.BytesToAddress([]byte{2}): newWrappedPrecompiledContract(&sha256hash{}), 96 common.BytesToAddress([]byte{3}): newWrappedPrecompiledContract(&ripemd160hash{}), 97 common.BytesToAddress([]byte{4}): newWrappedPrecompiledContract(&dataCopy{}), 98 common.BytesToAddress([]byte{5}): newWrappedPrecompiledContract(&bigModExp{eip2565: true}), 99 common.BytesToAddress([]byte{6}): newWrappedPrecompiledContract(&bn256AddIstanbul{}), 100 common.BytesToAddress([]byte{7}): newWrappedPrecompiledContract(&bn256ScalarMulIstanbul{}), 101 common.BytesToAddress([]byte{8}): newWrappedPrecompiledContract(&bn256PairingIstanbul{}), 102 common.BytesToAddress([]byte{9}): newWrappedPrecompiledContract(&blake2F{}), 103 genesisContractAddr: &deprecatedContract{}, 104 nativeAssetBalanceAddr: &nativeAssetBalance{gasCost: params.AssetBalanceApricot}, 105 nativeAssetCallAddr: &nativeAssetCall{gasCost: params.AssetCallApricot}, 106 } 107 108 var ( 109 PrecompiledAddressesApricotPhase2 []common.Address 110 PrecompiledAddressesIstanbul []common.Address 111 PrecompiledAddressesByzantium []common.Address 112 PrecompiledAddressesHomestead []common.Address 113 ) 114 115 func init() { 116 for k := range PrecompiledContractsHomestead { 117 PrecompiledAddressesHomestead = append(PrecompiledAddressesHomestead, k) 118 } 119 for k := range PrecompiledContractsByzantium { 120 PrecompiledAddressesByzantium = append(PrecompiledAddressesByzantium, k) 121 } 122 for k := range PrecompiledContractsIstanbul { 123 PrecompiledAddressesIstanbul = append(PrecompiledAddressesIstanbul, k) 124 } 125 for k := range PrecompiledContractsApricotPhase2 { 126 PrecompiledAddressesApricotPhase2 = append(PrecompiledAddressesApricotPhase2, k) 127 } 128 } 129 130 // ActivePrecompiles returns the precompiles enabled with the current configuration. 131 func ActivePrecompiles(rules params.Rules) []common.Address { 132 switch { 133 case rules.IsApricotPhase2: 134 return PrecompiledAddressesApricotPhase2 135 case rules.IsIstanbul: 136 return PrecompiledAddressesIstanbul 137 case rules.IsByzantium: 138 return PrecompiledAddressesByzantium 139 default: 140 return PrecompiledAddressesHomestead 141 } 142 } 143 144 // RunPrecompiledContract runs and evaluates the output of a precompiled contract. 145 // It returns 146 // - the returned bytes, 147 // - the _remaining_ gas, 148 // - any error that occurred 149 func RunPrecompiledContract(p PrecompiledContract, input []byte, suppliedGas uint64) (ret []byte, remainingGas uint64, err error) { 150 gasCost := p.RequiredGas(input) 151 if suppliedGas < gasCost { 152 return nil, 0, ErrOutOfGas 153 } 154 suppliedGas -= gasCost 155 output, err := p.Run(input) 156 return output, suppliedGas, err 157 } 158 159 // ECRECOVER implemented as a native contract. 160 type ecrecover struct{} 161 162 func (c *ecrecover) RequiredGas(input []byte) uint64 { 163 return params.EcrecoverGas 164 } 165 166 func (c *ecrecover) Run(input []byte) ([]byte, error) { 167 const ecRecoverInputLength = 128 168 169 input = common.RightPadBytes(input, ecRecoverInputLength) 170 // "input" is (hash, v, r, s), each 32 bytes 171 // but for ecrecover we want (r, s, v) 172 173 r := new(big.Int).SetBytes(input[64:96]) 174 s := new(big.Int).SetBytes(input[96:128]) 175 v := input[63] - 27 176 177 // tighter sig s values input homestead only apply to tx sigs 178 if !allZero(input[32:63]) || !crypto.ValidateSignatureValues(v, r, s, false) { 179 return nil, nil 180 } 181 // We must make sure not to modify the 'input', so placing the 'v' along with 182 // the signature needs to be done on a new allocation 183 sig := make([]byte, 65) 184 copy(sig, input[64:128]) 185 sig[64] = v 186 // v needs to be at the end for libsecp256k1 187 pubKey, err := crypto.Ecrecover(input[:32], sig) 188 // make sure the public key is a valid one 189 if err != nil { 190 return nil, nil 191 } 192 193 // the first byte of pubkey is bitcoin heritage 194 return common.LeftPadBytes(crypto.Keccak256(pubKey[1:])[12:], 32), nil 195 } 196 197 // SHA256 implemented as a native contract. 198 type sha256hash struct{} 199 200 // RequiredGas returns the gas required to execute the pre-compiled contract. 201 // 202 // This method does not require any overflow checking as the input size gas costs 203 // required for anything significant is so high it's impossible to pay for. 204 func (c *sha256hash) RequiredGas(input []byte) uint64 { 205 return uint64(len(input)+31)/32*params.Sha256PerWordGas + params.Sha256BaseGas 206 } 207 func (c *sha256hash) Run(input []byte) ([]byte, error) { 208 h := sha256.Sum256(input) 209 return h[:], nil 210 } 211 212 // RIPEMD160 implemented as a native contract. 213 type ripemd160hash struct{} 214 215 // RequiredGas returns the gas required to execute the pre-compiled contract. 216 // 217 // This method does not require any overflow checking as the input size gas costs 218 // required for anything significant is so high it's impossible to pay for. 219 func (c *ripemd160hash) RequiredGas(input []byte) uint64 { 220 return uint64(len(input)+31)/32*params.Ripemd160PerWordGas + params.Ripemd160BaseGas 221 } 222 func (c *ripemd160hash) Run(input []byte) ([]byte, error) { 223 ripemd := ripemd160.New() 224 ripemd.Write(input) 225 return common.LeftPadBytes(ripemd.Sum(nil), 32), nil 226 } 227 228 // data copy implemented as a native contract. 229 type dataCopy struct{} 230 231 // RequiredGas returns the gas required to execute the pre-compiled contract. 232 // 233 // This method does not require any overflow checking as the input size gas costs 234 // required for anything significant is so high it's impossible to pay for. 235 func (c *dataCopy) RequiredGas(input []byte) uint64 { 236 return uint64(len(input)+31)/32*params.IdentityPerWordGas + params.IdentityBaseGas 237 } 238 func (c *dataCopy) Run(in []byte) ([]byte, error) { 239 return in, nil 240 } 241 242 // bigModExp implements a native big integer exponential modular operation. 243 type bigModExp struct { 244 eip2565 bool 245 } 246 247 var ( 248 big0 = big.NewInt(0) 249 big1 = big.NewInt(1) 250 big3 = big.NewInt(3) 251 big4 = big.NewInt(4) 252 big7 = big.NewInt(7) 253 big8 = big.NewInt(8) 254 big16 = big.NewInt(16) 255 big20 = big.NewInt(20) 256 big32 = big.NewInt(32) 257 big64 = big.NewInt(64) 258 big96 = big.NewInt(96) 259 big480 = big.NewInt(480) 260 big1024 = big.NewInt(1024) 261 big3072 = big.NewInt(3072) 262 big199680 = big.NewInt(199680) 263 ) 264 265 // modexpMultComplexity implements bigModexp multComplexity formula, as defined in EIP-198 266 // 267 // def mult_complexity(x): 268 // if x <= 64: return x ** 2 269 // elif x <= 1024: return x ** 2 // 4 + 96 * x - 3072 270 // else: return x ** 2 // 16 + 480 * x - 199680 271 // 272 // where is x is max(length_of_MODULUS, length_of_BASE) 273 func modexpMultComplexity(x *big.Int) *big.Int { 274 switch { 275 case x.Cmp(big64) <= 0: 276 x.Mul(x, x) // x ** 2 277 case x.Cmp(big1024) <= 0: 278 // (x ** 2 // 4 ) + ( 96 * x - 3072) 279 x = new(big.Int).Add( 280 new(big.Int).Div(new(big.Int).Mul(x, x), big4), 281 new(big.Int).Sub(new(big.Int).Mul(big96, x), big3072), 282 ) 283 default: 284 // (x ** 2 // 16) + (480 * x - 199680) 285 x = new(big.Int).Add( 286 new(big.Int).Div(new(big.Int).Mul(x, x), big16), 287 new(big.Int).Sub(new(big.Int).Mul(big480, x), big199680), 288 ) 289 } 290 return x 291 } 292 293 // RequiredGas returns the gas required to execute the pre-compiled contract. 294 func (c *bigModExp) RequiredGas(input []byte) uint64 { 295 var ( 296 baseLen = new(big.Int).SetBytes(getData(input, 0, 32)) 297 expLen = new(big.Int).SetBytes(getData(input, 32, 32)) 298 modLen = new(big.Int).SetBytes(getData(input, 64, 32)) 299 ) 300 if len(input) > 96 { 301 input = input[96:] 302 } else { 303 input = input[:0] 304 } 305 // Retrieve the head 32 bytes of exp for the adjusted exponent length 306 var expHead *big.Int 307 if big.NewInt(int64(len(input))).Cmp(baseLen) <= 0 { 308 expHead = new(big.Int) 309 } else { 310 if expLen.Cmp(big32) > 0 { 311 expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), 32)) 312 } else { 313 expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), expLen.Uint64())) 314 } 315 } 316 // Calculate the adjusted exponent length 317 var msb int 318 if bitlen := expHead.BitLen(); bitlen > 0 { 319 msb = bitlen - 1 320 } 321 adjExpLen := new(big.Int) 322 if expLen.Cmp(big32) > 0 { 323 adjExpLen.Sub(expLen, big32) 324 adjExpLen.Mul(big8, adjExpLen) 325 } 326 adjExpLen.Add(adjExpLen, big.NewInt(int64(msb))) 327 // Calculate the gas cost of the operation 328 gas := new(big.Int).Set(math.BigMax(modLen, baseLen)) 329 if c.eip2565 { 330 // EIP-2565 has three changes 331 // 1. Different multComplexity (inlined here) 332 // in EIP-2565 (https://eips.ethereum.org/EIPS/eip-2565): 333 // 334 // def mult_complexity(x): 335 // ceiling(x/8)^2 336 // 337 //where is x is max(length_of_MODULUS, length_of_BASE) 338 gas = gas.Add(gas, big7) 339 gas = gas.Div(gas, big8) 340 gas.Mul(gas, gas) 341 342 gas.Mul(gas, math.BigMax(adjExpLen, big1)) 343 // 2. Different divisor (`GQUADDIVISOR`) (3) 344 gas.Div(gas, big3) 345 if gas.BitLen() > 64 { 346 return math.MaxUint64 347 } 348 // 3. Minimum price of 200 gas 349 if gas.Uint64() < 200 { 350 return 200 351 } 352 return gas.Uint64() 353 } 354 gas = modexpMultComplexity(gas) 355 gas.Mul(gas, math.BigMax(adjExpLen, big1)) 356 gas.Div(gas, big20) 357 358 if gas.BitLen() > 64 { 359 return math.MaxUint64 360 } 361 return gas.Uint64() 362 } 363 364 func (c *bigModExp) Run(input []byte) ([]byte, error) { 365 var ( 366 baseLen = new(big.Int).SetBytes(getData(input, 0, 32)).Uint64() 367 expLen = new(big.Int).SetBytes(getData(input, 32, 32)).Uint64() 368 modLen = new(big.Int).SetBytes(getData(input, 64, 32)).Uint64() 369 ) 370 if len(input) > 96 { 371 input = input[96:] 372 } else { 373 input = input[:0] 374 } 375 // Handle a special case when both the base and mod length is zero 376 if baseLen == 0 && modLen == 0 { 377 return []byte{}, nil 378 } 379 // Retrieve the operands and execute the exponentiation 380 var ( 381 base = new(big.Int).SetBytes(getData(input, 0, baseLen)) 382 exp = new(big.Int).SetBytes(getData(input, baseLen, expLen)) 383 mod = new(big.Int).SetBytes(getData(input, baseLen+expLen, modLen)) 384 ) 385 if mod.BitLen() == 0 { 386 // Modulo 0 is undefined, return zero 387 return common.LeftPadBytes([]byte{}, int(modLen)), nil 388 } 389 return common.LeftPadBytes(base.Exp(base, exp, mod).Bytes(), int(modLen)), nil 390 } 391 392 // newCurvePoint unmarshals a binary blob into a bn256 elliptic curve point, 393 // returning it, or an error if the point is invalid. 394 func newCurvePoint(blob []byte) (*bn256.G1, error) { 395 p := new(bn256.G1) 396 if _, err := p.Unmarshal(blob); err != nil { 397 return nil, err 398 } 399 return p, nil 400 } 401 402 // newTwistPoint unmarshals a binary blob into a bn256 elliptic curve point, 403 // returning it, or an error if the point is invalid. 404 func newTwistPoint(blob []byte) (*bn256.G2, error) { 405 p := new(bn256.G2) 406 if _, err := p.Unmarshal(blob); err != nil { 407 return nil, err 408 } 409 return p, nil 410 } 411 412 // runBn256Add implements the Bn256Add precompile, referenced by both 413 // Byzantium and Istanbul operations. 414 func runBn256Add(input []byte) ([]byte, error) { 415 x, err := newCurvePoint(getData(input, 0, 64)) 416 if err != nil { 417 return nil, err 418 } 419 y, err := newCurvePoint(getData(input, 64, 64)) 420 if err != nil { 421 return nil, err 422 } 423 res := new(bn256.G1) 424 res.Add(x, y) 425 return res.Marshal(), nil 426 } 427 428 // bn256Add implements a native elliptic curve point addition conforming to 429 // Istanbul consensus rules. 430 type bn256AddIstanbul struct{} 431 432 // RequiredGas returns the gas required to execute the pre-compiled contract. 433 func (c *bn256AddIstanbul) RequiredGas(input []byte) uint64 { 434 return params.Bn256AddGasIstanbul 435 } 436 437 func (c *bn256AddIstanbul) Run(input []byte) ([]byte, error) { 438 return runBn256Add(input) 439 } 440 441 // bn256AddByzantium implements a native elliptic curve point addition 442 // conforming to Byzantium consensus rules. 443 type bn256AddByzantium struct{} 444 445 // RequiredGas returns the gas required to execute the pre-compiled contract. 446 func (c *bn256AddByzantium) RequiredGas(input []byte) uint64 { 447 return params.Bn256AddGasByzantium 448 } 449 450 func (c *bn256AddByzantium) Run(input []byte) ([]byte, error) { 451 return runBn256Add(input) 452 } 453 454 // runBn256ScalarMul implements the Bn256ScalarMul precompile, referenced by 455 // both Byzantium and Istanbul operations. 456 func runBn256ScalarMul(input []byte) ([]byte, error) { 457 p, err := newCurvePoint(getData(input, 0, 64)) 458 if err != nil { 459 return nil, err 460 } 461 res := new(bn256.G1) 462 res.ScalarMult(p, new(big.Int).SetBytes(getData(input, 64, 32))) 463 return res.Marshal(), nil 464 } 465 466 // bn256ScalarMulIstanbul implements a native elliptic curve scalar 467 // multiplication conforming to Istanbul consensus rules. 468 type bn256ScalarMulIstanbul struct{} 469 470 // RequiredGas returns the gas required to execute the pre-compiled contract. 471 func (c *bn256ScalarMulIstanbul) RequiredGas(input []byte) uint64 { 472 return params.Bn256ScalarMulGasIstanbul 473 } 474 475 func (c *bn256ScalarMulIstanbul) Run(input []byte) ([]byte, error) { 476 return runBn256ScalarMul(input) 477 } 478 479 // bn256ScalarMulByzantium implements a native elliptic curve scalar 480 // multiplication conforming to Byzantium consensus rules. 481 type bn256ScalarMulByzantium struct{} 482 483 // RequiredGas returns the gas required to execute the pre-compiled contract. 484 func (c *bn256ScalarMulByzantium) RequiredGas(input []byte) uint64 { 485 return params.Bn256ScalarMulGasByzantium 486 } 487 488 func (c *bn256ScalarMulByzantium) Run(input []byte) ([]byte, error) { 489 return runBn256ScalarMul(input) 490 } 491 492 var ( 493 // true32Byte is returned if the bn256 pairing check succeeds. 494 true32Byte = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1} 495 496 // false32Byte is returned if the bn256 pairing check fails. 497 false32Byte = make([]byte, 32) 498 499 // errBadPairingInput is returned if the bn256 pairing input is invalid. 500 errBadPairingInput = errors.New("bad elliptic curve pairing size") 501 ) 502 503 // runBn256Pairing implements the Bn256Pairing precompile, referenced by both 504 // Byzantium and Istanbul operations. 505 func runBn256Pairing(input []byte) ([]byte, error) { 506 // Handle some corner cases cheaply 507 if len(input)%192 > 0 { 508 return nil, errBadPairingInput 509 } 510 // Convert the input into a set of coordinates 511 var ( 512 cs []*bn256.G1 513 ts []*bn256.G2 514 ) 515 for i := 0; i < len(input); i += 192 { 516 c, err := newCurvePoint(input[i : i+64]) 517 if err != nil { 518 return nil, err 519 } 520 t, err := newTwistPoint(input[i+64 : i+192]) 521 if err != nil { 522 return nil, err 523 } 524 cs = append(cs, c) 525 ts = append(ts, t) 526 } 527 // Execute the pairing checks and return the results 528 if bn256.PairingCheck(cs, ts) { 529 return true32Byte, nil 530 } 531 return false32Byte, nil 532 } 533 534 // bn256PairingIstanbul implements a pairing pre-compile for the bn256 curve 535 // conforming to Istanbul consensus rules. 536 type bn256PairingIstanbul struct{} 537 538 // RequiredGas returns the gas required to execute the pre-compiled contract. 539 func (c *bn256PairingIstanbul) RequiredGas(input []byte) uint64 { 540 return params.Bn256PairingBaseGasIstanbul + uint64(len(input)/192)*params.Bn256PairingPerPointGasIstanbul 541 } 542 543 func (c *bn256PairingIstanbul) Run(input []byte) ([]byte, error) { 544 return runBn256Pairing(input) 545 } 546 547 // bn256PairingByzantium implements a pairing pre-compile for the bn256 curve 548 // conforming to Byzantium consensus rules. 549 type bn256PairingByzantium struct{} 550 551 // RequiredGas returns the gas required to execute the pre-compiled contract. 552 func (c *bn256PairingByzantium) RequiredGas(input []byte) uint64 { 553 return params.Bn256PairingBaseGasByzantium + uint64(len(input)/192)*params.Bn256PairingPerPointGasByzantium 554 } 555 556 func (c *bn256PairingByzantium) Run(input []byte) ([]byte, error) { 557 return runBn256Pairing(input) 558 } 559 560 type blake2F struct{} 561 562 func (c *blake2F) RequiredGas(input []byte) uint64 { 563 // If the input is malformed, we can't calculate the gas, return 0 and let the 564 // actual call choke and fault. 565 if len(input) != blake2FInputLength { 566 return 0 567 } 568 return uint64(binary.BigEndian.Uint32(input[0:4])) 569 } 570 571 const ( 572 blake2FInputLength = 213 573 blake2FFinalBlockBytes = byte(1) 574 blake2FNonFinalBlockBytes = byte(0) 575 ) 576 577 var ( 578 errBlake2FInvalidInputLength = errors.New("invalid input length") 579 errBlake2FInvalidFinalFlag = errors.New("invalid final flag") 580 ) 581 582 func (c *blake2F) Run(input []byte) ([]byte, error) { 583 // Make sure the input is valid (correct length and final flag) 584 if len(input) != blake2FInputLength { 585 return nil, errBlake2FInvalidInputLength 586 } 587 if input[212] != blake2FNonFinalBlockBytes && input[212] != blake2FFinalBlockBytes { 588 return nil, errBlake2FInvalidFinalFlag 589 } 590 // Parse the input into the Blake2b call parameters 591 var ( 592 rounds = binary.BigEndian.Uint32(input[0:4]) 593 final = (input[212] == blake2FFinalBlockBytes) 594 595 h [8]uint64 596 m [16]uint64 597 t [2]uint64 598 ) 599 for i := 0; i < 8; i++ { 600 offset := 4 + i*8 601 h[i] = binary.LittleEndian.Uint64(input[offset : offset+8]) 602 } 603 for i := 0; i < 16; i++ { 604 offset := 68 + i*8 605 m[i] = binary.LittleEndian.Uint64(input[offset : offset+8]) 606 } 607 t[0] = binary.LittleEndian.Uint64(input[196:204]) 608 t[1] = binary.LittleEndian.Uint64(input[204:212]) 609 610 // Execute the compression function, extract and return the result 611 blake2b.F(&h, m, t, final, rounds) 612 613 output := make([]byte, 64) 614 for i := 0; i < 8; i++ { 615 offset := i * 8 616 binary.LittleEndian.PutUint64(output[offset:offset+8], h[i]) 617 } 618 return output, nil 619 } 620 621 var ( 622 errBLS12381InvalidInputLength = errors.New("invalid input length") 623 errBLS12381InvalidFieldElementTopBytes = errors.New("invalid field element top bytes") 624 errBLS12381G1PointSubgroup = errors.New("g1 point is not on correct subgroup") 625 errBLS12381G2PointSubgroup = errors.New("g2 point is not on correct subgroup") 626 ) 627 628 // bls12381G1Add implements EIP-2537 G1Add precompile. 629 type bls12381G1Add struct{} 630 631 // RequiredGas returns the gas required to execute the pre-compiled contract. 632 func (c *bls12381G1Add) RequiredGas(input []byte) uint64 { 633 return params.Bls12381G1AddGas 634 } 635 636 func (c *bls12381G1Add) Run(input []byte) ([]byte, error) { 637 // Implements EIP-2537 G1Add precompile. 638 // > G1 addition call expects `256` bytes as an input that is interpreted as byte concatenation of two G1 points (`128` bytes each). 639 // > Output is an encoding of addition operation result - single G1 point (`128` bytes). 640 if len(input) != 256 { 641 return nil, errBLS12381InvalidInputLength 642 } 643 var err error 644 var p0, p1 *bls12381.PointG1 645 646 // Initialize G1 647 g := bls12381.NewG1() 648 649 // Decode G1 point p_0 650 if p0, err = g.DecodePoint(input[:128]); err != nil { 651 return nil, err 652 } 653 // Decode G1 point p_1 654 if p1, err = g.DecodePoint(input[128:]); err != nil { 655 return nil, err 656 } 657 658 // Compute r = p_0 + p_1 659 r := g.New() 660 g.Add(r, p0, p1) 661 662 // Encode the G1 point result into 128 bytes 663 return g.EncodePoint(r), nil 664 } 665 666 // bls12381G1Mul implements EIP-2537 G1Mul precompile. 667 type bls12381G1Mul struct{} 668 669 // RequiredGas returns the gas required to execute the pre-compiled contract. 670 func (c *bls12381G1Mul) RequiredGas(input []byte) uint64 { 671 return params.Bls12381G1MulGas 672 } 673 674 func (c *bls12381G1Mul) Run(input []byte) ([]byte, error) { 675 // Implements EIP-2537 G1Mul precompile. 676 // > G1 multiplication call expects `160` bytes as an input that is interpreted as byte concatenation of encoding of G1 point (`128` bytes) and encoding of a scalar value (`32` bytes). 677 // > Output is an encoding of multiplication operation result - single G1 point (`128` bytes). 678 if len(input) != 160 { 679 return nil, errBLS12381InvalidInputLength 680 } 681 var err error 682 var p0 *bls12381.PointG1 683 684 // Initialize G1 685 g := bls12381.NewG1() 686 687 // Decode G1 point 688 if p0, err = g.DecodePoint(input[:128]); err != nil { 689 return nil, err 690 } 691 // Decode scalar value 692 e := new(big.Int).SetBytes(input[128:]) 693 694 // Compute r = e * p_0 695 r := g.New() 696 g.MulScalar(r, p0, e) 697 698 // Encode the G1 point into 128 bytes 699 return g.EncodePoint(r), nil 700 } 701 702 // bls12381G1MultiExp implements EIP-2537 G1MultiExp precompile. 703 type bls12381G1MultiExp struct{} 704 705 // RequiredGas returns the gas required to execute the pre-compiled contract. 706 func (c *bls12381G1MultiExp) RequiredGas(input []byte) uint64 { 707 // Calculate G1 point, scalar value pair length 708 k := len(input) / 160 709 if k == 0 { 710 // Return 0 gas for small input length 711 return 0 712 } 713 // Lookup discount value for G1 point, scalar value pair length 714 var discount uint64 715 if dLen := len(params.Bls12381MultiExpDiscountTable); k < dLen { 716 discount = params.Bls12381MultiExpDiscountTable[k-1] 717 } else { 718 discount = params.Bls12381MultiExpDiscountTable[dLen-1] 719 } 720 // Calculate gas and return the result 721 return (uint64(k) * params.Bls12381G1MulGas * discount) / 1000 722 } 723 724 func (c *bls12381G1MultiExp) Run(input []byte) ([]byte, error) { 725 // Implements EIP-2537 G1MultiExp precompile. 726 // G1 multiplication call expects `160*k` bytes as an input that is interpreted as byte concatenation of `k` slices each of them being a byte concatenation of encoding of G1 point (`128` bytes) and encoding of a scalar value (`32` bytes). 727 // Output is an encoding of multiexponentiation operation result - single G1 point (`128` bytes). 728 k := len(input) / 160 729 if len(input) == 0 || len(input)%160 != 0 { 730 return nil, errBLS12381InvalidInputLength 731 } 732 var err error 733 points := make([]*bls12381.PointG1, k) 734 scalars := make([]*big.Int, k) 735 736 // Initialize G1 737 g := bls12381.NewG1() 738 739 // Decode point scalar pairs 740 for i := 0; i < k; i++ { 741 off := 160 * i 742 t0, t1, t2 := off, off+128, off+160 743 // Decode G1 point 744 if points[i], err = g.DecodePoint(input[t0:t1]); err != nil { 745 return nil, err 746 } 747 // Decode scalar value 748 scalars[i] = new(big.Int).SetBytes(input[t1:t2]) 749 } 750 751 // Compute r = e_0 * p_0 + e_1 * p_1 + ... + e_(k-1) * p_(k-1) 752 r := g.New() 753 g.MultiExp(r, points, scalars) 754 755 // Encode the G1 point to 128 bytes 756 return g.EncodePoint(r), nil 757 } 758 759 // bls12381G2Add implements EIP-2537 G2Add precompile. 760 type bls12381G2Add struct{} 761 762 // RequiredGas returns the gas required to execute the pre-compiled contract. 763 func (c *bls12381G2Add) RequiredGas(input []byte) uint64 { 764 return params.Bls12381G2AddGas 765 } 766 767 func (c *bls12381G2Add) Run(input []byte) ([]byte, error) { 768 // Implements EIP-2537 G2Add precompile. 769 // > G2 addition call expects `512` bytes as an input that is interpreted as byte concatenation of two G2 points (`256` bytes each). 770 // > Output is an encoding of addition operation result - single G2 point (`256` bytes). 771 if len(input) != 512 { 772 return nil, errBLS12381InvalidInputLength 773 } 774 var err error 775 var p0, p1 *bls12381.PointG2 776 777 // Initialize G2 778 g := bls12381.NewG2() 779 r := g.New() 780 781 // Decode G2 point p_0 782 if p0, err = g.DecodePoint(input[:256]); err != nil { 783 return nil, err 784 } 785 // Decode G2 point p_1 786 if p1, err = g.DecodePoint(input[256:]); err != nil { 787 return nil, err 788 } 789 790 // Compute r = p_0 + p_1 791 g.Add(r, p0, p1) 792 793 // Encode the G2 point into 256 bytes 794 return g.EncodePoint(r), nil 795 } 796 797 // bls12381G2Mul implements EIP-2537 G2Mul precompile. 798 type bls12381G2Mul struct{} 799 800 // RequiredGas returns the gas required to execute the pre-compiled contract. 801 func (c *bls12381G2Mul) RequiredGas(input []byte) uint64 { 802 return params.Bls12381G2MulGas 803 } 804 805 func (c *bls12381G2Mul) Run(input []byte) ([]byte, error) { 806 // Implements EIP-2537 G2MUL precompile logic. 807 // > G2 multiplication call expects `288` bytes as an input that is interpreted as byte concatenation of encoding of G2 point (`256` bytes) and encoding of a scalar value (`32` bytes). 808 // > Output is an encoding of multiplication operation result - single G2 point (`256` bytes). 809 if len(input) != 288 { 810 return nil, errBLS12381InvalidInputLength 811 } 812 var err error 813 var p0 *bls12381.PointG2 814 815 // Initialize G2 816 g := bls12381.NewG2() 817 818 // Decode G2 point 819 if p0, err = g.DecodePoint(input[:256]); err != nil { 820 return nil, err 821 } 822 // Decode scalar value 823 e := new(big.Int).SetBytes(input[256:]) 824 825 // Compute r = e * p_0 826 r := g.New() 827 g.MulScalar(r, p0, e) 828 829 // Encode the G2 point into 256 bytes 830 return g.EncodePoint(r), nil 831 } 832 833 // bls12381G2MultiExp implements EIP-2537 G2MultiExp precompile. 834 type bls12381G2MultiExp struct{} 835 836 // RequiredGas returns the gas required to execute the pre-compiled contract. 837 func (c *bls12381G2MultiExp) RequiredGas(input []byte) uint64 { 838 // Calculate G2 point, scalar value pair length 839 k := len(input) / 288 840 if k == 0 { 841 // Return 0 gas for small input length 842 return 0 843 } 844 // Lookup discount value for G2 point, scalar value pair length 845 var discount uint64 846 if dLen := len(params.Bls12381MultiExpDiscountTable); k < dLen { 847 discount = params.Bls12381MultiExpDiscountTable[k-1] 848 } else { 849 discount = params.Bls12381MultiExpDiscountTable[dLen-1] 850 } 851 // Calculate gas and return the result 852 return (uint64(k) * params.Bls12381G2MulGas * discount) / 1000 853 } 854 855 func (c *bls12381G2MultiExp) Run(input []byte) ([]byte, error) { 856 // Implements EIP-2537 G2MultiExp precompile logic 857 // > G2 multiplication call expects `288*k` bytes as an input that is interpreted as byte concatenation of `k` slices each of them being a byte concatenation of encoding of G2 point (`256` bytes) and encoding of a scalar value (`32` bytes). 858 // > Output is an encoding of multiexponentiation operation result - single G2 point (`256` bytes). 859 k := len(input) / 288 860 if len(input) == 0 || len(input)%288 != 0 { 861 return nil, errBLS12381InvalidInputLength 862 } 863 var err error 864 points := make([]*bls12381.PointG2, k) 865 scalars := make([]*big.Int, k) 866 867 // Initialize G2 868 g := bls12381.NewG2() 869 870 // Decode point scalar pairs 871 for i := 0; i < k; i++ { 872 off := 288 * i 873 t0, t1, t2 := off, off+256, off+288 874 // Decode G1 point 875 if points[i], err = g.DecodePoint(input[t0:t1]); err != nil { 876 return nil, err 877 } 878 // Decode scalar value 879 scalars[i] = new(big.Int).SetBytes(input[t1:t2]) 880 } 881 882 // Compute r = e_0 * p_0 + e_1 * p_1 + ... + e_(k-1) * p_(k-1) 883 r := g.New() 884 g.MultiExp(r, points, scalars) 885 886 // Encode the G2 point to 256 bytes. 887 return g.EncodePoint(r), nil 888 } 889 890 // bls12381Pairing implements EIP-2537 Pairing precompile. 891 type bls12381Pairing struct{} 892 893 // RequiredGas returns the gas required to execute the pre-compiled contract. 894 func (c *bls12381Pairing) RequiredGas(input []byte) uint64 { 895 return params.Bls12381PairingBaseGas + uint64(len(input)/384)*params.Bls12381PairingPerPairGas 896 } 897 898 func (c *bls12381Pairing) Run(input []byte) ([]byte, error) { 899 // Implements EIP-2537 Pairing precompile logic. 900 // > Pairing call expects `384*k` bytes as an inputs that is interpreted as byte concatenation of `k` slices. Each slice has the following structure: 901 // > - `128` bytes of G1 point encoding 902 // > - `256` bytes of G2 point encoding 903 // > Output is a `32` bytes where last single byte is `0x01` if pairing result is equal to multiplicative identity in a pairing target field and `0x00` otherwise 904 // > (which is equivalent of Big Endian encoding of Solidity values `uint256(1)` and `uin256(0)` respectively). 905 k := len(input) / 384 906 if len(input) == 0 || len(input)%384 != 0 { 907 return nil, errBLS12381InvalidInputLength 908 } 909 910 // Initialize BLS12-381 pairing engine 911 e := bls12381.NewPairingEngine() 912 g1, g2 := e.G1, e.G2 913 914 // Decode pairs 915 for i := 0; i < k; i++ { 916 off := 384 * i 917 t0, t1, t2 := off, off+128, off+384 918 919 // Decode G1 point 920 p1, err := g1.DecodePoint(input[t0:t1]) 921 if err != nil { 922 return nil, err 923 } 924 // Decode G2 point 925 p2, err := g2.DecodePoint(input[t1:t2]) 926 if err != nil { 927 return nil, err 928 } 929 930 // 'point is on curve' check already done, 931 // Here we need to apply subgroup checks. 932 if !g1.InCorrectSubgroup(p1) { 933 return nil, errBLS12381G1PointSubgroup 934 } 935 if !g2.InCorrectSubgroup(p2) { 936 return nil, errBLS12381G2PointSubgroup 937 } 938 939 // Update pairing engine with G1 and G2 ponits 940 e.AddPair(p1, p2) 941 } 942 // Prepare 32 byte output 943 out := make([]byte, 32) 944 945 // Compute pairing and set the result 946 if e.Check() { 947 out[31] = 1 948 } 949 return out, nil 950 } 951 952 // decodeBLS12381FieldElement decodes BLS12-381 elliptic curve field element. 953 // Removes top 16 bytes of 64 byte input. 954 func decodeBLS12381FieldElement(in []byte) ([]byte, error) { 955 if len(in) != 64 { 956 return nil, errors.New("invalid field element length") 957 } 958 // check top bytes 959 for i := 0; i < 16; i++ { 960 if in[i] != byte(0x00) { 961 return nil, errBLS12381InvalidFieldElementTopBytes 962 } 963 } 964 out := make([]byte, 48) 965 copy(out[:], in[16:]) 966 return out, nil 967 } 968 969 // bls12381MapG1 implements EIP-2537 MapG1 precompile. 970 type bls12381MapG1 struct{} 971 972 // RequiredGas returns the gas required to execute the pre-compiled contract. 973 func (c *bls12381MapG1) RequiredGas(input []byte) uint64 { 974 return params.Bls12381MapG1Gas 975 } 976 977 func (c *bls12381MapG1) Run(input []byte) ([]byte, error) { 978 // Implements EIP-2537 Map_To_G1 precompile. 979 // > Field-to-curve call expects `64` bytes an an input that is interpreted as a an element of the base field. 980 // > Output of this call is `128` bytes and is G1 point following respective encoding rules. 981 if len(input) != 64 { 982 return nil, errBLS12381InvalidInputLength 983 } 984 985 // Decode input field element 986 fe, err := decodeBLS12381FieldElement(input) 987 if err != nil { 988 return nil, err 989 } 990 991 // Initialize G1 992 g := bls12381.NewG1() 993 994 // Compute mapping 995 r, err := g.MapToCurve(fe) 996 if err != nil { 997 return nil, err 998 } 999 1000 // Encode the G1 point to 128 bytes 1001 return g.EncodePoint(r), nil 1002 } 1003 1004 // bls12381MapG2 implements EIP-2537 MapG2 precompile. 1005 type bls12381MapG2 struct{} 1006 1007 // RequiredGas returns the gas required to execute the pre-compiled contract. 1008 func (c *bls12381MapG2) RequiredGas(input []byte) uint64 { 1009 return params.Bls12381MapG2Gas 1010 } 1011 1012 func (c *bls12381MapG2) Run(input []byte) ([]byte, error) { 1013 // Implements EIP-2537 Map_FP2_TO_G2 precompile logic. 1014 // > Field-to-curve call expects `128` bytes an an input that is interpreted as a an element of the quadratic extension field. 1015 // > Output of this call is `256` bytes and is G2 point following respective encoding rules. 1016 if len(input) != 128 { 1017 return nil, errBLS12381InvalidInputLength 1018 } 1019 1020 // Decode input field element 1021 fe := make([]byte, 96) 1022 c0, err := decodeBLS12381FieldElement(input[:64]) 1023 if err != nil { 1024 return nil, err 1025 } 1026 copy(fe[48:], c0) 1027 c1, err := decodeBLS12381FieldElement(input[64:]) 1028 if err != nil { 1029 return nil, err 1030 } 1031 copy(fe[:48], c1) 1032 1033 // Initialize G2 1034 g := bls12381.NewG2() 1035 1036 // Compute mapping 1037 r, err := g.MapToCurve(fe) 1038 if err != nil { 1039 return nil, err 1040 } 1041 1042 // Encode the G2 point to 256 bytes 1043 return g.EncodePoint(r), nil 1044 }