gitlab.com/yannislg/go-pulse@v0.0.0-20210722055913-a3e24e95638d/core/vm/contracts.go (about)

     1  // Copyright 2014 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package vm
    18  
    19  import (
    20  	"crypto/sha256"
    21  	"encoding/binary"
    22  	"errors"
    23  	"math/big"
    24  
    25  	"github.com/ethereum/go-ethereum/common"
    26  	"github.com/ethereum/go-ethereum/common/math"
    27  	"github.com/ethereum/go-ethereum/crypto"
    28  	"github.com/ethereum/go-ethereum/crypto/blake2b"
    29  	"github.com/ethereum/go-ethereum/crypto/bn256"
    30  	"github.com/ethereum/go-ethereum/params"
    31  
    32  	//lint:ignore SA1019 Needed for precompile
    33  	"golang.org/x/crypto/ripemd160"
    34  )
    35  
    36  // PrecompiledContract is the basic interface for native Go contracts. The implementation
    37  // requires a deterministic gas count based on the input size of the Run method of the
    38  // contract.
    39  type PrecompiledContract interface {
    40  	RequiredGas(input []byte) uint64  // RequiredPrice calculates the contract gas use
    41  	Run(input []byte) ([]byte, error) // Run runs the precompiled contract
    42  }
    43  
    44  // PrecompiledContractsHomestead contains the default set of pre-compiled Ethereum
    45  // contracts used in the Frontier and Homestead releases.
    46  var PrecompiledContractsHomestead = map[common.Address]PrecompiledContract{
    47  	common.BytesToAddress([]byte{1}): &ecrecover{},
    48  	common.BytesToAddress([]byte{2}): &sha256hash{},
    49  	common.BytesToAddress([]byte{3}): &ripemd160hash{},
    50  	common.BytesToAddress([]byte{4}): &dataCopy{},
    51  }
    52  
    53  // PrecompiledContractsByzantium contains the default set of pre-compiled Ethereum
    54  // contracts used in the Byzantium release.
    55  var PrecompiledContractsByzantium = map[common.Address]PrecompiledContract{
    56  	common.BytesToAddress([]byte{1}): &ecrecover{},
    57  	common.BytesToAddress([]byte{2}): &sha256hash{},
    58  	common.BytesToAddress([]byte{3}): &ripemd160hash{},
    59  	common.BytesToAddress([]byte{4}): &dataCopy{},
    60  	common.BytesToAddress([]byte{5}): &bigModExp{},
    61  	common.BytesToAddress([]byte{6}): &bn256AddByzantium{},
    62  	common.BytesToAddress([]byte{7}): &bn256ScalarMulByzantium{},
    63  	common.BytesToAddress([]byte{8}): &bn256PairingByzantium{},
    64  }
    65  
    66  // PrecompiledContractsIstanbul contains the default set of pre-compiled Ethereum
    67  // contracts used in the Istanbul release.
    68  var PrecompiledContractsIstanbul = map[common.Address]PrecompiledContract{
    69  	common.BytesToAddress([]byte{1}): &ecrecover{},
    70  	common.BytesToAddress([]byte{2}): &sha256hash{},
    71  	common.BytesToAddress([]byte{3}): &ripemd160hash{},
    72  	common.BytesToAddress([]byte{4}): &dataCopy{},
    73  	common.BytesToAddress([]byte{5}): &bigModExp{},
    74  	common.BytesToAddress([]byte{6}): &bn256AddIstanbul{},
    75  	common.BytesToAddress([]byte{7}): &bn256ScalarMulIstanbul{},
    76  	common.BytesToAddress([]byte{8}): &bn256PairingIstanbul{},
    77  	common.BytesToAddress([]byte{9}): &blake2F{},
    78  }
    79  
    80  // RunPrecompiledContract runs and evaluates the output of a precompiled contract.
    81  func RunPrecompiledContract(p PrecompiledContract, input []byte, contract *Contract) (ret []byte, err error) {
    82  	gas := p.RequiredGas(input)
    83  	if contract.UseGas(gas) {
    84  		return p.Run(input)
    85  	}
    86  	return nil, ErrOutOfGas
    87  }
    88  
    89  // ECRECOVER implemented as a native contract.
    90  type ecrecover struct{}
    91  
    92  func (c *ecrecover) RequiredGas(input []byte) uint64 {
    93  	return params.EcrecoverGas
    94  }
    95  
    96  func (c *ecrecover) Run(input []byte) ([]byte, error) {
    97  	const ecRecoverInputLength = 128
    98  
    99  	input = common.RightPadBytes(input, ecRecoverInputLength)
   100  	// "input" is (hash, v, r, s), each 32 bytes
   101  	// but for ecrecover we want (r, s, v)
   102  
   103  	r := new(big.Int).SetBytes(input[64:96])
   104  	s := new(big.Int).SetBytes(input[96:128])
   105  	v := input[63] - 27
   106  
   107  	// tighter sig s values input homestead only apply to tx sigs
   108  	if !allZero(input[32:63]) || !crypto.ValidateSignatureValues(v, r, s, false) {
   109  		return nil, nil
   110  	}
   111  	// We must make sure not to modify the 'input', so placing the 'v' along with
   112  	// the signature needs to be done on a new allocation
   113  	sig := make([]byte, 65)
   114  	copy(sig, input[64:128])
   115  	sig[64] = v
   116  	// v needs to be at the end for libsecp256k1
   117  	pubKey, err := crypto.Ecrecover(input[:32], sig)
   118  	// make sure the public key is a valid one
   119  	if err != nil {
   120  		return nil, nil
   121  	}
   122  
   123  	// the first byte of pubkey is bitcoin heritage
   124  	return common.LeftPadBytes(crypto.Keccak256(pubKey[1:])[12:], 32), nil
   125  }
   126  
   127  // SHA256 implemented as a native contract.
   128  type sha256hash struct{}
   129  
   130  // RequiredGas returns the gas required to execute the pre-compiled contract.
   131  //
   132  // This method does not require any overflow checking as the input size gas costs
   133  // required for anything significant is so high it's impossible to pay for.
   134  func (c *sha256hash) RequiredGas(input []byte) uint64 {
   135  	return uint64(len(input)+31)/32*params.Sha256PerWordGas + params.Sha256BaseGas
   136  }
   137  func (c *sha256hash) Run(input []byte) ([]byte, error) {
   138  	h := sha256.Sum256(input)
   139  	return h[:], nil
   140  }
   141  
   142  // RIPEMD160 implemented as a native contract.
   143  type ripemd160hash struct{}
   144  
   145  // RequiredGas returns the gas required to execute the pre-compiled contract.
   146  //
   147  // This method does not require any overflow checking as the input size gas costs
   148  // required for anything significant is so high it's impossible to pay for.
   149  func (c *ripemd160hash) RequiredGas(input []byte) uint64 {
   150  	return uint64(len(input)+31)/32*params.Ripemd160PerWordGas + params.Ripemd160BaseGas
   151  }
   152  func (c *ripemd160hash) Run(input []byte) ([]byte, error) {
   153  	ripemd := ripemd160.New()
   154  	ripemd.Write(input)
   155  	return common.LeftPadBytes(ripemd.Sum(nil), 32), nil
   156  }
   157  
   158  // data copy implemented as a native contract.
   159  type dataCopy struct{}
   160  
   161  // RequiredGas returns the gas required to execute the pre-compiled contract.
   162  //
   163  // This method does not require any overflow checking as the input size gas costs
   164  // required for anything significant is so high it's impossible to pay for.
   165  func (c *dataCopy) RequiredGas(input []byte) uint64 {
   166  	return uint64(len(input)+31)/32*params.IdentityPerWordGas + params.IdentityBaseGas
   167  }
   168  func (c *dataCopy) Run(in []byte) ([]byte, error) {
   169  	return in, nil
   170  }
   171  
   172  // bigModExp implements a native big integer exponential modular operation.
   173  type bigModExp struct{}
   174  
   175  var (
   176  	big1      = big.NewInt(1)
   177  	big4      = big.NewInt(4)
   178  	big8      = big.NewInt(8)
   179  	big16     = big.NewInt(16)
   180  	big32     = big.NewInt(32)
   181  	big64     = big.NewInt(64)
   182  	big96     = big.NewInt(96)
   183  	big480    = big.NewInt(480)
   184  	big1024   = big.NewInt(1024)
   185  	big3072   = big.NewInt(3072)
   186  	big199680 = big.NewInt(199680)
   187  )
   188  
   189  // RequiredGas returns the gas required to execute the pre-compiled contract.
   190  func (c *bigModExp) RequiredGas(input []byte) uint64 {
   191  	var (
   192  		baseLen = new(big.Int).SetBytes(getData(input, 0, 32))
   193  		expLen  = new(big.Int).SetBytes(getData(input, 32, 32))
   194  		modLen  = new(big.Int).SetBytes(getData(input, 64, 32))
   195  	)
   196  	if len(input) > 96 {
   197  		input = input[96:]
   198  	} else {
   199  		input = input[:0]
   200  	}
   201  	// Retrieve the head 32 bytes of exp for the adjusted exponent length
   202  	var expHead *big.Int
   203  	if big.NewInt(int64(len(input))).Cmp(baseLen) <= 0 {
   204  		expHead = new(big.Int)
   205  	} else {
   206  		if expLen.Cmp(big32) > 0 {
   207  			expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), 32))
   208  		} else {
   209  			expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), expLen.Uint64()))
   210  		}
   211  	}
   212  	// Calculate the adjusted exponent length
   213  	var msb int
   214  	if bitlen := expHead.BitLen(); bitlen > 0 {
   215  		msb = bitlen - 1
   216  	}
   217  	adjExpLen := new(big.Int)
   218  	if expLen.Cmp(big32) > 0 {
   219  		adjExpLen.Sub(expLen, big32)
   220  		adjExpLen.Mul(big8, adjExpLen)
   221  	}
   222  	adjExpLen.Add(adjExpLen, big.NewInt(int64(msb)))
   223  
   224  	// Calculate the gas cost of the operation
   225  	gas := new(big.Int).Set(math.BigMax(modLen, baseLen))
   226  	switch {
   227  	case gas.Cmp(big64) <= 0:
   228  		gas.Mul(gas, gas)
   229  	case gas.Cmp(big1024) <= 0:
   230  		gas = new(big.Int).Add(
   231  			new(big.Int).Div(new(big.Int).Mul(gas, gas), big4),
   232  			new(big.Int).Sub(new(big.Int).Mul(big96, gas), big3072),
   233  		)
   234  	default:
   235  		gas = new(big.Int).Add(
   236  			new(big.Int).Div(new(big.Int).Mul(gas, gas), big16),
   237  			new(big.Int).Sub(new(big.Int).Mul(big480, gas), big199680),
   238  		)
   239  	}
   240  	gas.Mul(gas, math.BigMax(adjExpLen, big1))
   241  	gas.Div(gas, new(big.Int).SetUint64(params.ModExpQuadCoeffDiv))
   242  
   243  	if gas.BitLen() > 64 {
   244  		return math.MaxUint64
   245  	}
   246  	return gas.Uint64()
   247  }
   248  
   249  func (c *bigModExp) Run(input []byte) ([]byte, error) {
   250  	var (
   251  		baseLen = new(big.Int).SetBytes(getData(input, 0, 32)).Uint64()
   252  		expLen  = new(big.Int).SetBytes(getData(input, 32, 32)).Uint64()
   253  		modLen  = new(big.Int).SetBytes(getData(input, 64, 32)).Uint64()
   254  	)
   255  	if len(input) > 96 {
   256  		input = input[96:]
   257  	} else {
   258  		input = input[:0]
   259  	}
   260  	// Handle a special case when both the base and mod length is zero
   261  	if baseLen == 0 && modLen == 0 {
   262  		return []byte{}, nil
   263  	}
   264  	// Retrieve the operands and execute the exponentiation
   265  	var (
   266  		base = new(big.Int).SetBytes(getData(input, 0, baseLen))
   267  		exp  = new(big.Int).SetBytes(getData(input, baseLen, expLen))
   268  		mod  = new(big.Int).SetBytes(getData(input, baseLen+expLen, modLen))
   269  	)
   270  	if mod.BitLen() == 0 {
   271  		// Modulo 0 is undefined, return zero
   272  		return common.LeftPadBytes([]byte{}, int(modLen)), nil
   273  	}
   274  	return common.LeftPadBytes(base.Exp(base, exp, mod).Bytes(), int(modLen)), nil
   275  }
   276  
   277  // newCurvePoint unmarshals a binary blob into a bn256 elliptic curve point,
   278  // returning it, or an error if the point is invalid.
   279  func newCurvePoint(blob []byte) (*bn256.G1, error) {
   280  	p := new(bn256.G1)
   281  	if _, err := p.Unmarshal(blob); err != nil {
   282  		return nil, err
   283  	}
   284  	return p, nil
   285  }
   286  
   287  // newTwistPoint unmarshals a binary blob into a bn256 elliptic curve point,
   288  // returning it, or an error if the point is invalid.
   289  func newTwistPoint(blob []byte) (*bn256.G2, error) {
   290  	p := new(bn256.G2)
   291  	if _, err := p.Unmarshal(blob); err != nil {
   292  		return nil, err
   293  	}
   294  	return p, nil
   295  }
   296  
   297  // runBn256Add implements the Bn256Add precompile, referenced by both
   298  // Byzantium and Istanbul operations.
   299  func runBn256Add(input []byte) ([]byte, error) {
   300  	x, err := newCurvePoint(getData(input, 0, 64))
   301  	if err != nil {
   302  		return nil, err
   303  	}
   304  	y, err := newCurvePoint(getData(input, 64, 64))
   305  	if err != nil {
   306  		return nil, err
   307  	}
   308  	res := new(bn256.G1)
   309  	res.Add(x, y)
   310  	return res.Marshal(), nil
   311  }
   312  
   313  // bn256Add implements a native elliptic curve point addition conforming to
   314  // Istanbul consensus rules.
   315  type bn256AddIstanbul struct{}
   316  
   317  // RequiredGas returns the gas required to execute the pre-compiled contract.
   318  func (c *bn256AddIstanbul) RequiredGas(input []byte) uint64 {
   319  	return params.Bn256AddGasIstanbul
   320  }
   321  
   322  func (c *bn256AddIstanbul) Run(input []byte) ([]byte, error) {
   323  	return runBn256Add(input)
   324  }
   325  
   326  // bn256AddByzantium implements a native elliptic curve point addition
   327  // conforming to Byzantium consensus rules.
   328  type bn256AddByzantium struct{}
   329  
   330  // RequiredGas returns the gas required to execute the pre-compiled contract.
   331  func (c *bn256AddByzantium) RequiredGas(input []byte) uint64 {
   332  	return params.Bn256AddGasByzantium
   333  }
   334  
   335  func (c *bn256AddByzantium) Run(input []byte) ([]byte, error) {
   336  	return runBn256Add(input)
   337  }
   338  
   339  // runBn256ScalarMul implements the Bn256ScalarMul precompile, referenced by
   340  // both Byzantium and Istanbul operations.
   341  func runBn256ScalarMul(input []byte) ([]byte, error) {
   342  	p, err := newCurvePoint(getData(input, 0, 64))
   343  	if err != nil {
   344  		return nil, err
   345  	}
   346  	res := new(bn256.G1)
   347  	res.ScalarMult(p, new(big.Int).SetBytes(getData(input, 64, 32)))
   348  	return res.Marshal(), nil
   349  }
   350  
   351  // bn256ScalarMulIstanbul implements a native elliptic curve scalar
   352  // multiplication conforming to Istanbul consensus rules.
   353  type bn256ScalarMulIstanbul struct{}
   354  
   355  // RequiredGas returns the gas required to execute the pre-compiled contract.
   356  func (c *bn256ScalarMulIstanbul) RequiredGas(input []byte) uint64 {
   357  	return params.Bn256ScalarMulGasIstanbul
   358  }
   359  
   360  func (c *bn256ScalarMulIstanbul) Run(input []byte) ([]byte, error) {
   361  	return runBn256ScalarMul(input)
   362  }
   363  
   364  // bn256ScalarMulByzantium implements a native elliptic curve scalar
   365  // multiplication conforming to Byzantium consensus rules.
   366  type bn256ScalarMulByzantium struct{}
   367  
   368  // RequiredGas returns the gas required to execute the pre-compiled contract.
   369  func (c *bn256ScalarMulByzantium) RequiredGas(input []byte) uint64 {
   370  	return params.Bn256ScalarMulGasByzantium
   371  }
   372  
   373  func (c *bn256ScalarMulByzantium) Run(input []byte) ([]byte, error) {
   374  	return runBn256ScalarMul(input)
   375  }
   376  
   377  var (
   378  	// true32Byte is returned if the bn256 pairing check succeeds.
   379  	true32Byte = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}
   380  
   381  	// false32Byte is returned if the bn256 pairing check fails.
   382  	false32Byte = make([]byte, 32)
   383  
   384  	// errBadPairingInput is returned if the bn256 pairing input is invalid.
   385  	errBadPairingInput = errors.New("bad elliptic curve pairing size")
   386  )
   387  
   388  // runBn256Pairing implements the Bn256Pairing precompile, referenced by both
   389  // Byzantium and Istanbul operations.
   390  func runBn256Pairing(input []byte) ([]byte, error) {
   391  	// Handle some corner cases cheaply
   392  	if len(input)%192 > 0 {
   393  		return nil, errBadPairingInput
   394  	}
   395  	// Convert the input into a set of coordinates
   396  	var (
   397  		cs []*bn256.G1
   398  		ts []*bn256.G2
   399  	)
   400  	for i := 0; i < len(input); i += 192 {
   401  		c, err := newCurvePoint(input[i : i+64])
   402  		if err != nil {
   403  			return nil, err
   404  		}
   405  		t, err := newTwistPoint(input[i+64 : i+192])
   406  		if err != nil {
   407  			return nil, err
   408  		}
   409  		cs = append(cs, c)
   410  		ts = append(ts, t)
   411  	}
   412  	// Execute the pairing checks and return the results
   413  	if bn256.PairingCheck(cs, ts) {
   414  		return true32Byte, nil
   415  	}
   416  	return false32Byte, nil
   417  }
   418  
   419  // bn256PairingIstanbul implements a pairing pre-compile for the bn256 curve
   420  // conforming to Istanbul consensus rules.
   421  type bn256PairingIstanbul struct{}
   422  
   423  // RequiredGas returns the gas required to execute the pre-compiled contract.
   424  func (c *bn256PairingIstanbul) RequiredGas(input []byte) uint64 {
   425  	return params.Bn256PairingBaseGasIstanbul + uint64(len(input)/192)*params.Bn256PairingPerPointGasIstanbul
   426  }
   427  
   428  func (c *bn256PairingIstanbul) Run(input []byte) ([]byte, error) {
   429  	return runBn256Pairing(input)
   430  }
   431  
   432  // bn256PairingByzantium implements a pairing pre-compile for the bn256 curve
   433  // conforming to Byzantium consensus rules.
   434  type bn256PairingByzantium struct{}
   435  
   436  // RequiredGas returns the gas required to execute the pre-compiled contract.
   437  func (c *bn256PairingByzantium) RequiredGas(input []byte) uint64 {
   438  	return params.Bn256PairingBaseGasByzantium + uint64(len(input)/192)*params.Bn256PairingPerPointGasByzantium
   439  }
   440  
   441  func (c *bn256PairingByzantium) Run(input []byte) ([]byte, error) {
   442  	return runBn256Pairing(input)
   443  }
   444  
   445  type blake2F struct{}
   446  
   447  func (c *blake2F) RequiredGas(input []byte) uint64 {
   448  	// If the input is malformed, we can't calculate the gas, return 0 and let the
   449  	// actual call choke and fault.
   450  	if len(input) != blake2FInputLength {
   451  		return 0
   452  	}
   453  	return uint64(binary.BigEndian.Uint32(input[0:4]))
   454  }
   455  
   456  const (
   457  	blake2FInputLength        = 213
   458  	blake2FFinalBlockBytes    = byte(1)
   459  	blake2FNonFinalBlockBytes = byte(0)
   460  )
   461  
   462  var (
   463  	errBlake2FInvalidInputLength = errors.New("invalid input length")
   464  	errBlake2FInvalidFinalFlag   = errors.New("invalid final flag")
   465  )
   466  
   467  func (c *blake2F) Run(input []byte) ([]byte, error) {
   468  	// Make sure the input is valid (correct lenth and final flag)
   469  	if len(input) != blake2FInputLength {
   470  		return nil, errBlake2FInvalidInputLength
   471  	}
   472  	if input[212] != blake2FNonFinalBlockBytes && input[212] != blake2FFinalBlockBytes {
   473  		return nil, errBlake2FInvalidFinalFlag
   474  	}
   475  	// Parse the input into the Blake2b call parameters
   476  	var (
   477  		rounds = binary.BigEndian.Uint32(input[0:4])
   478  		final  = (input[212] == blake2FFinalBlockBytes)
   479  
   480  		h [8]uint64
   481  		m [16]uint64
   482  		t [2]uint64
   483  	)
   484  	for i := 0; i < 8; i++ {
   485  		offset := 4 + i*8
   486  		h[i] = binary.LittleEndian.Uint64(input[offset : offset+8])
   487  	}
   488  	for i := 0; i < 16; i++ {
   489  		offset := 68 + i*8
   490  		m[i] = binary.LittleEndian.Uint64(input[offset : offset+8])
   491  	}
   492  	t[0] = binary.LittleEndian.Uint64(input[196:204])
   493  	t[1] = binary.LittleEndian.Uint64(input[204:212])
   494  
   495  	// Execute the compression function, extract and return the result
   496  	blake2b.F(&h, m, t, final, rounds)
   497  
   498  	output := make([]byte, 64)
   499  	for i := 0; i < 8; i++ {
   500  		offset := i * 8
   501  		binary.LittleEndian.PutUint64(output[offset:offset+8], h[i])
   502  	}
   503  	return output, nil
   504  }