gitlab.com/yannislg/go-pulse@v0.0.0-20210722055913-a3e24e95638d/core/vm/contracts.go (about) 1 // Copyright 2014 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package vm 18 19 import ( 20 "crypto/sha256" 21 "encoding/binary" 22 "errors" 23 "math/big" 24 25 "github.com/ethereum/go-ethereum/common" 26 "github.com/ethereum/go-ethereum/common/math" 27 "github.com/ethereum/go-ethereum/crypto" 28 "github.com/ethereum/go-ethereum/crypto/blake2b" 29 "github.com/ethereum/go-ethereum/crypto/bn256" 30 "github.com/ethereum/go-ethereum/params" 31 32 //lint:ignore SA1019 Needed for precompile 33 "golang.org/x/crypto/ripemd160" 34 ) 35 36 // PrecompiledContract is the basic interface for native Go contracts. The implementation 37 // requires a deterministic gas count based on the input size of the Run method of the 38 // contract. 39 type PrecompiledContract interface { 40 RequiredGas(input []byte) uint64 // RequiredPrice calculates the contract gas use 41 Run(input []byte) ([]byte, error) // Run runs the precompiled contract 42 } 43 44 // PrecompiledContractsHomestead contains the default set of pre-compiled Ethereum 45 // contracts used in the Frontier and Homestead releases. 46 var PrecompiledContractsHomestead = map[common.Address]PrecompiledContract{ 47 common.BytesToAddress([]byte{1}): &ecrecover{}, 48 common.BytesToAddress([]byte{2}): &sha256hash{}, 49 common.BytesToAddress([]byte{3}): &ripemd160hash{}, 50 common.BytesToAddress([]byte{4}): &dataCopy{}, 51 } 52 53 // PrecompiledContractsByzantium contains the default set of pre-compiled Ethereum 54 // contracts used in the Byzantium release. 55 var PrecompiledContractsByzantium = map[common.Address]PrecompiledContract{ 56 common.BytesToAddress([]byte{1}): &ecrecover{}, 57 common.BytesToAddress([]byte{2}): &sha256hash{}, 58 common.BytesToAddress([]byte{3}): &ripemd160hash{}, 59 common.BytesToAddress([]byte{4}): &dataCopy{}, 60 common.BytesToAddress([]byte{5}): &bigModExp{}, 61 common.BytesToAddress([]byte{6}): &bn256AddByzantium{}, 62 common.BytesToAddress([]byte{7}): &bn256ScalarMulByzantium{}, 63 common.BytesToAddress([]byte{8}): &bn256PairingByzantium{}, 64 } 65 66 // PrecompiledContractsIstanbul contains the default set of pre-compiled Ethereum 67 // contracts used in the Istanbul release. 68 var PrecompiledContractsIstanbul = map[common.Address]PrecompiledContract{ 69 common.BytesToAddress([]byte{1}): &ecrecover{}, 70 common.BytesToAddress([]byte{2}): &sha256hash{}, 71 common.BytesToAddress([]byte{3}): &ripemd160hash{}, 72 common.BytesToAddress([]byte{4}): &dataCopy{}, 73 common.BytesToAddress([]byte{5}): &bigModExp{}, 74 common.BytesToAddress([]byte{6}): &bn256AddIstanbul{}, 75 common.BytesToAddress([]byte{7}): &bn256ScalarMulIstanbul{}, 76 common.BytesToAddress([]byte{8}): &bn256PairingIstanbul{}, 77 common.BytesToAddress([]byte{9}): &blake2F{}, 78 } 79 80 // RunPrecompiledContract runs and evaluates the output of a precompiled contract. 81 func RunPrecompiledContract(p PrecompiledContract, input []byte, contract *Contract) (ret []byte, err error) { 82 gas := p.RequiredGas(input) 83 if contract.UseGas(gas) { 84 return p.Run(input) 85 } 86 return nil, ErrOutOfGas 87 } 88 89 // ECRECOVER implemented as a native contract. 90 type ecrecover struct{} 91 92 func (c *ecrecover) RequiredGas(input []byte) uint64 { 93 return params.EcrecoverGas 94 } 95 96 func (c *ecrecover) Run(input []byte) ([]byte, error) { 97 const ecRecoverInputLength = 128 98 99 input = common.RightPadBytes(input, ecRecoverInputLength) 100 // "input" is (hash, v, r, s), each 32 bytes 101 // but for ecrecover we want (r, s, v) 102 103 r := new(big.Int).SetBytes(input[64:96]) 104 s := new(big.Int).SetBytes(input[96:128]) 105 v := input[63] - 27 106 107 // tighter sig s values input homestead only apply to tx sigs 108 if !allZero(input[32:63]) || !crypto.ValidateSignatureValues(v, r, s, false) { 109 return nil, nil 110 } 111 // We must make sure not to modify the 'input', so placing the 'v' along with 112 // the signature needs to be done on a new allocation 113 sig := make([]byte, 65) 114 copy(sig, input[64:128]) 115 sig[64] = v 116 // v needs to be at the end for libsecp256k1 117 pubKey, err := crypto.Ecrecover(input[:32], sig) 118 // make sure the public key is a valid one 119 if err != nil { 120 return nil, nil 121 } 122 123 // the first byte of pubkey is bitcoin heritage 124 return common.LeftPadBytes(crypto.Keccak256(pubKey[1:])[12:], 32), nil 125 } 126 127 // SHA256 implemented as a native contract. 128 type sha256hash struct{} 129 130 // RequiredGas returns the gas required to execute the pre-compiled contract. 131 // 132 // This method does not require any overflow checking as the input size gas costs 133 // required for anything significant is so high it's impossible to pay for. 134 func (c *sha256hash) RequiredGas(input []byte) uint64 { 135 return uint64(len(input)+31)/32*params.Sha256PerWordGas + params.Sha256BaseGas 136 } 137 func (c *sha256hash) Run(input []byte) ([]byte, error) { 138 h := sha256.Sum256(input) 139 return h[:], nil 140 } 141 142 // RIPEMD160 implemented as a native contract. 143 type ripemd160hash struct{} 144 145 // RequiredGas returns the gas required to execute the pre-compiled contract. 146 // 147 // This method does not require any overflow checking as the input size gas costs 148 // required for anything significant is so high it's impossible to pay for. 149 func (c *ripemd160hash) RequiredGas(input []byte) uint64 { 150 return uint64(len(input)+31)/32*params.Ripemd160PerWordGas + params.Ripemd160BaseGas 151 } 152 func (c *ripemd160hash) Run(input []byte) ([]byte, error) { 153 ripemd := ripemd160.New() 154 ripemd.Write(input) 155 return common.LeftPadBytes(ripemd.Sum(nil), 32), nil 156 } 157 158 // data copy implemented as a native contract. 159 type dataCopy struct{} 160 161 // RequiredGas returns the gas required to execute the pre-compiled contract. 162 // 163 // This method does not require any overflow checking as the input size gas costs 164 // required for anything significant is so high it's impossible to pay for. 165 func (c *dataCopy) RequiredGas(input []byte) uint64 { 166 return uint64(len(input)+31)/32*params.IdentityPerWordGas + params.IdentityBaseGas 167 } 168 func (c *dataCopy) Run(in []byte) ([]byte, error) { 169 return in, nil 170 } 171 172 // bigModExp implements a native big integer exponential modular operation. 173 type bigModExp struct{} 174 175 var ( 176 big1 = big.NewInt(1) 177 big4 = big.NewInt(4) 178 big8 = big.NewInt(8) 179 big16 = big.NewInt(16) 180 big32 = big.NewInt(32) 181 big64 = big.NewInt(64) 182 big96 = big.NewInt(96) 183 big480 = big.NewInt(480) 184 big1024 = big.NewInt(1024) 185 big3072 = big.NewInt(3072) 186 big199680 = big.NewInt(199680) 187 ) 188 189 // RequiredGas returns the gas required to execute the pre-compiled contract. 190 func (c *bigModExp) RequiredGas(input []byte) uint64 { 191 var ( 192 baseLen = new(big.Int).SetBytes(getData(input, 0, 32)) 193 expLen = new(big.Int).SetBytes(getData(input, 32, 32)) 194 modLen = new(big.Int).SetBytes(getData(input, 64, 32)) 195 ) 196 if len(input) > 96 { 197 input = input[96:] 198 } else { 199 input = input[:0] 200 } 201 // Retrieve the head 32 bytes of exp for the adjusted exponent length 202 var expHead *big.Int 203 if big.NewInt(int64(len(input))).Cmp(baseLen) <= 0 { 204 expHead = new(big.Int) 205 } else { 206 if expLen.Cmp(big32) > 0 { 207 expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), 32)) 208 } else { 209 expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), expLen.Uint64())) 210 } 211 } 212 // Calculate the adjusted exponent length 213 var msb int 214 if bitlen := expHead.BitLen(); bitlen > 0 { 215 msb = bitlen - 1 216 } 217 adjExpLen := new(big.Int) 218 if expLen.Cmp(big32) > 0 { 219 adjExpLen.Sub(expLen, big32) 220 adjExpLen.Mul(big8, adjExpLen) 221 } 222 adjExpLen.Add(adjExpLen, big.NewInt(int64(msb))) 223 224 // Calculate the gas cost of the operation 225 gas := new(big.Int).Set(math.BigMax(modLen, baseLen)) 226 switch { 227 case gas.Cmp(big64) <= 0: 228 gas.Mul(gas, gas) 229 case gas.Cmp(big1024) <= 0: 230 gas = new(big.Int).Add( 231 new(big.Int).Div(new(big.Int).Mul(gas, gas), big4), 232 new(big.Int).Sub(new(big.Int).Mul(big96, gas), big3072), 233 ) 234 default: 235 gas = new(big.Int).Add( 236 new(big.Int).Div(new(big.Int).Mul(gas, gas), big16), 237 new(big.Int).Sub(new(big.Int).Mul(big480, gas), big199680), 238 ) 239 } 240 gas.Mul(gas, math.BigMax(adjExpLen, big1)) 241 gas.Div(gas, new(big.Int).SetUint64(params.ModExpQuadCoeffDiv)) 242 243 if gas.BitLen() > 64 { 244 return math.MaxUint64 245 } 246 return gas.Uint64() 247 } 248 249 func (c *bigModExp) Run(input []byte) ([]byte, error) { 250 var ( 251 baseLen = new(big.Int).SetBytes(getData(input, 0, 32)).Uint64() 252 expLen = new(big.Int).SetBytes(getData(input, 32, 32)).Uint64() 253 modLen = new(big.Int).SetBytes(getData(input, 64, 32)).Uint64() 254 ) 255 if len(input) > 96 { 256 input = input[96:] 257 } else { 258 input = input[:0] 259 } 260 // Handle a special case when both the base and mod length is zero 261 if baseLen == 0 && modLen == 0 { 262 return []byte{}, nil 263 } 264 // Retrieve the operands and execute the exponentiation 265 var ( 266 base = new(big.Int).SetBytes(getData(input, 0, baseLen)) 267 exp = new(big.Int).SetBytes(getData(input, baseLen, expLen)) 268 mod = new(big.Int).SetBytes(getData(input, baseLen+expLen, modLen)) 269 ) 270 if mod.BitLen() == 0 { 271 // Modulo 0 is undefined, return zero 272 return common.LeftPadBytes([]byte{}, int(modLen)), nil 273 } 274 return common.LeftPadBytes(base.Exp(base, exp, mod).Bytes(), int(modLen)), nil 275 } 276 277 // newCurvePoint unmarshals a binary blob into a bn256 elliptic curve point, 278 // returning it, or an error if the point is invalid. 279 func newCurvePoint(blob []byte) (*bn256.G1, error) { 280 p := new(bn256.G1) 281 if _, err := p.Unmarshal(blob); err != nil { 282 return nil, err 283 } 284 return p, nil 285 } 286 287 // newTwistPoint unmarshals a binary blob into a bn256 elliptic curve point, 288 // returning it, or an error if the point is invalid. 289 func newTwistPoint(blob []byte) (*bn256.G2, error) { 290 p := new(bn256.G2) 291 if _, err := p.Unmarshal(blob); err != nil { 292 return nil, err 293 } 294 return p, nil 295 } 296 297 // runBn256Add implements the Bn256Add precompile, referenced by both 298 // Byzantium and Istanbul operations. 299 func runBn256Add(input []byte) ([]byte, error) { 300 x, err := newCurvePoint(getData(input, 0, 64)) 301 if err != nil { 302 return nil, err 303 } 304 y, err := newCurvePoint(getData(input, 64, 64)) 305 if err != nil { 306 return nil, err 307 } 308 res := new(bn256.G1) 309 res.Add(x, y) 310 return res.Marshal(), nil 311 } 312 313 // bn256Add implements a native elliptic curve point addition conforming to 314 // Istanbul consensus rules. 315 type bn256AddIstanbul struct{} 316 317 // RequiredGas returns the gas required to execute the pre-compiled contract. 318 func (c *bn256AddIstanbul) RequiredGas(input []byte) uint64 { 319 return params.Bn256AddGasIstanbul 320 } 321 322 func (c *bn256AddIstanbul) Run(input []byte) ([]byte, error) { 323 return runBn256Add(input) 324 } 325 326 // bn256AddByzantium implements a native elliptic curve point addition 327 // conforming to Byzantium consensus rules. 328 type bn256AddByzantium struct{} 329 330 // RequiredGas returns the gas required to execute the pre-compiled contract. 331 func (c *bn256AddByzantium) RequiredGas(input []byte) uint64 { 332 return params.Bn256AddGasByzantium 333 } 334 335 func (c *bn256AddByzantium) Run(input []byte) ([]byte, error) { 336 return runBn256Add(input) 337 } 338 339 // runBn256ScalarMul implements the Bn256ScalarMul precompile, referenced by 340 // both Byzantium and Istanbul operations. 341 func runBn256ScalarMul(input []byte) ([]byte, error) { 342 p, err := newCurvePoint(getData(input, 0, 64)) 343 if err != nil { 344 return nil, err 345 } 346 res := new(bn256.G1) 347 res.ScalarMult(p, new(big.Int).SetBytes(getData(input, 64, 32))) 348 return res.Marshal(), nil 349 } 350 351 // bn256ScalarMulIstanbul implements a native elliptic curve scalar 352 // multiplication conforming to Istanbul consensus rules. 353 type bn256ScalarMulIstanbul struct{} 354 355 // RequiredGas returns the gas required to execute the pre-compiled contract. 356 func (c *bn256ScalarMulIstanbul) RequiredGas(input []byte) uint64 { 357 return params.Bn256ScalarMulGasIstanbul 358 } 359 360 func (c *bn256ScalarMulIstanbul) Run(input []byte) ([]byte, error) { 361 return runBn256ScalarMul(input) 362 } 363 364 // bn256ScalarMulByzantium implements a native elliptic curve scalar 365 // multiplication conforming to Byzantium consensus rules. 366 type bn256ScalarMulByzantium struct{} 367 368 // RequiredGas returns the gas required to execute the pre-compiled contract. 369 func (c *bn256ScalarMulByzantium) RequiredGas(input []byte) uint64 { 370 return params.Bn256ScalarMulGasByzantium 371 } 372 373 func (c *bn256ScalarMulByzantium) Run(input []byte) ([]byte, error) { 374 return runBn256ScalarMul(input) 375 } 376 377 var ( 378 // true32Byte is returned if the bn256 pairing check succeeds. 379 true32Byte = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1} 380 381 // false32Byte is returned if the bn256 pairing check fails. 382 false32Byte = make([]byte, 32) 383 384 // errBadPairingInput is returned if the bn256 pairing input is invalid. 385 errBadPairingInput = errors.New("bad elliptic curve pairing size") 386 ) 387 388 // runBn256Pairing implements the Bn256Pairing precompile, referenced by both 389 // Byzantium and Istanbul operations. 390 func runBn256Pairing(input []byte) ([]byte, error) { 391 // Handle some corner cases cheaply 392 if len(input)%192 > 0 { 393 return nil, errBadPairingInput 394 } 395 // Convert the input into a set of coordinates 396 var ( 397 cs []*bn256.G1 398 ts []*bn256.G2 399 ) 400 for i := 0; i < len(input); i += 192 { 401 c, err := newCurvePoint(input[i : i+64]) 402 if err != nil { 403 return nil, err 404 } 405 t, err := newTwistPoint(input[i+64 : i+192]) 406 if err != nil { 407 return nil, err 408 } 409 cs = append(cs, c) 410 ts = append(ts, t) 411 } 412 // Execute the pairing checks and return the results 413 if bn256.PairingCheck(cs, ts) { 414 return true32Byte, nil 415 } 416 return false32Byte, nil 417 } 418 419 // bn256PairingIstanbul implements a pairing pre-compile for the bn256 curve 420 // conforming to Istanbul consensus rules. 421 type bn256PairingIstanbul struct{} 422 423 // RequiredGas returns the gas required to execute the pre-compiled contract. 424 func (c *bn256PairingIstanbul) RequiredGas(input []byte) uint64 { 425 return params.Bn256PairingBaseGasIstanbul + uint64(len(input)/192)*params.Bn256PairingPerPointGasIstanbul 426 } 427 428 func (c *bn256PairingIstanbul) Run(input []byte) ([]byte, error) { 429 return runBn256Pairing(input) 430 } 431 432 // bn256PairingByzantium implements a pairing pre-compile for the bn256 curve 433 // conforming to Byzantium consensus rules. 434 type bn256PairingByzantium struct{} 435 436 // RequiredGas returns the gas required to execute the pre-compiled contract. 437 func (c *bn256PairingByzantium) RequiredGas(input []byte) uint64 { 438 return params.Bn256PairingBaseGasByzantium + uint64(len(input)/192)*params.Bn256PairingPerPointGasByzantium 439 } 440 441 func (c *bn256PairingByzantium) Run(input []byte) ([]byte, error) { 442 return runBn256Pairing(input) 443 } 444 445 type blake2F struct{} 446 447 func (c *blake2F) RequiredGas(input []byte) uint64 { 448 // If the input is malformed, we can't calculate the gas, return 0 and let the 449 // actual call choke and fault. 450 if len(input) != blake2FInputLength { 451 return 0 452 } 453 return uint64(binary.BigEndian.Uint32(input[0:4])) 454 } 455 456 const ( 457 blake2FInputLength = 213 458 blake2FFinalBlockBytes = byte(1) 459 blake2FNonFinalBlockBytes = byte(0) 460 ) 461 462 var ( 463 errBlake2FInvalidInputLength = errors.New("invalid input length") 464 errBlake2FInvalidFinalFlag = errors.New("invalid final flag") 465 ) 466 467 func (c *blake2F) Run(input []byte) ([]byte, error) { 468 // Make sure the input is valid (correct lenth and final flag) 469 if len(input) != blake2FInputLength { 470 return nil, errBlake2FInvalidInputLength 471 } 472 if input[212] != blake2FNonFinalBlockBytes && input[212] != blake2FFinalBlockBytes { 473 return nil, errBlake2FInvalidFinalFlag 474 } 475 // Parse the input into the Blake2b call parameters 476 var ( 477 rounds = binary.BigEndian.Uint32(input[0:4]) 478 final = (input[212] == blake2FFinalBlockBytes) 479 480 h [8]uint64 481 m [16]uint64 482 t [2]uint64 483 ) 484 for i := 0; i < 8; i++ { 485 offset := 4 + i*8 486 h[i] = binary.LittleEndian.Uint64(input[offset : offset+8]) 487 } 488 for i := 0; i < 16; i++ { 489 offset := 68 + i*8 490 m[i] = binary.LittleEndian.Uint64(input[offset : offset+8]) 491 } 492 t[0] = binary.LittleEndian.Uint64(input[196:204]) 493 t[1] = binary.LittleEndian.Uint64(input[204:212]) 494 495 // Execute the compression function, extract and return the result 496 blake2b.F(&h, m, t, final, rounds) 497 498 output := make([]byte, 64) 499 for i := 0; i < 8; i++ { 500 offset := i * 8 501 binary.LittleEndian.PutUint64(output[offset:offset+8], h[i]) 502 } 503 return output, nil 504 }