go.etcd.io/etcd@v3.3.27+incompatible/raft/node.go (about)

     1  // Copyright 2015 The etcd Authors
     2  //
     3  // Licensed under the Apache License, Version 2.0 (the "License");
     4  // you may not use this file except in compliance with the License.
     5  // You may obtain a copy of the License at
     6  //
     7  //     http://www.apache.org/licenses/LICENSE-2.0
     8  //
     9  // Unless required by applicable law or agreed to in writing, software
    10  // distributed under the License is distributed on an "AS IS" BASIS,
    11  // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    12  // See the License for the specific language governing permissions and
    13  // limitations under the License.
    14  
    15  package raft
    16  
    17  import (
    18  	"context"
    19  	"errors"
    20  
    21  	pb "github.com/coreos/etcd/raft/raftpb"
    22  )
    23  
    24  type SnapshotStatus int
    25  
    26  const (
    27  	SnapshotFinish  SnapshotStatus = 1
    28  	SnapshotFailure SnapshotStatus = 2
    29  )
    30  
    31  var (
    32  	emptyState = pb.HardState{}
    33  
    34  	// ErrStopped is returned by methods on Nodes that have been stopped.
    35  	ErrStopped = errors.New("raft: stopped")
    36  )
    37  
    38  // SoftState provides state that is useful for logging and debugging.
    39  // The state is volatile and does not need to be persisted to the WAL.
    40  type SoftState struct {
    41  	Lead      uint64 // must use atomic operations to access; keep 64-bit aligned.
    42  	RaftState StateType
    43  }
    44  
    45  func (a *SoftState) equal(b *SoftState) bool {
    46  	return a.Lead == b.Lead && a.RaftState == b.RaftState
    47  }
    48  
    49  // Ready encapsulates the entries and messages that are ready to read,
    50  // be saved to stable storage, committed or sent to other peers.
    51  // All fields in Ready are read-only.
    52  type Ready struct {
    53  	// The current volatile state of a Node.
    54  	// SoftState will be nil if there is no update.
    55  	// It is not required to consume or store SoftState.
    56  	*SoftState
    57  
    58  	// The current state of a Node to be saved to stable storage BEFORE
    59  	// Messages are sent.
    60  	// HardState will be equal to empty state if there is no update.
    61  	pb.HardState
    62  
    63  	// ReadStates can be used for node to serve linearizable read requests locally
    64  	// when its applied index is greater than the index in ReadState.
    65  	// Note that the readState will be returned when raft receives msgReadIndex.
    66  	// The returned is only valid for the request that requested to read.
    67  	ReadStates []ReadState
    68  
    69  	// Entries specifies entries to be saved to stable storage BEFORE
    70  	// Messages are sent.
    71  	Entries []pb.Entry
    72  
    73  	// Snapshot specifies the snapshot to be saved to stable storage.
    74  	Snapshot pb.Snapshot
    75  
    76  	// CommittedEntries specifies entries to be committed to a
    77  	// store/state-machine. These have previously been committed to stable
    78  	// store.
    79  	CommittedEntries []pb.Entry
    80  
    81  	// Messages specifies outbound messages to be sent AFTER Entries are
    82  	// committed to stable storage.
    83  	// If it contains a MsgSnap message, the application MUST report back to raft
    84  	// when the snapshot has been received or has failed by calling ReportSnapshot.
    85  	Messages []pb.Message
    86  
    87  	// MustSync indicates whether the HardState and Entries must be synchronously
    88  	// written to disk or if an asynchronous write is permissible.
    89  	MustSync bool
    90  }
    91  
    92  func isHardStateEqual(a, b pb.HardState) bool {
    93  	return a.Term == b.Term && a.Vote == b.Vote && a.Commit == b.Commit
    94  }
    95  
    96  // IsEmptyHardState returns true if the given HardState is empty.
    97  func IsEmptyHardState(st pb.HardState) bool {
    98  	return isHardStateEqual(st, emptyState)
    99  }
   100  
   101  // IsEmptySnap returns true if the given Snapshot is empty.
   102  func IsEmptySnap(sp pb.Snapshot) bool {
   103  	return sp.Metadata.Index == 0
   104  }
   105  
   106  func (rd Ready) containsUpdates() bool {
   107  	return rd.SoftState != nil || !IsEmptyHardState(rd.HardState) ||
   108  		!IsEmptySnap(rd.Snapshot) || len(rd.Entries) > 0 ||
   109  		len(rd.CommittedEntries) > 0 || len(rd.Messages) > 0 || len(rd.ReadStates) != 0
   110  }
   111  
   112  // Node represents a node in a raft cluster.
   113  type Node interface {
   114  	// Tick increments the internal logical clock for the Node by a single tick. Election
   115  	// timeouts and heartbeat timeouts are in units of ticks.
   116  	Tick()
   117  	// Campaign causes the Node to transition to candidate state and start campaigning to become leader.
   118  	Campaign(ctx context.Context) error
   119  	// Propose proposes that data be appended to the log.
   120  	Propose(ctx context.Context, data []byte) error
   121  	// ProposeConfChange proposes config change.
   122  	// At most one ConfChange can be in the process of going through consensus.
   123  	// Application needs to call ApplyConfChange when applying EntryConfChange type entry.
   124  	ProposeConfChange(ctx context.Context, cc pb.ConfChange) error
   125  	// Step advances the state machine using the given message. ctx.Err() will be returned, if any.
   126  	Step(ctx context.Context, msg pb.Message) error
   127  
   128  	// Ready returns a channel that returns the current point-in-time state.
   129  	// Users of the Node must call Advance after retrieving the state returned by Ready.
   130  	//
   131  	// NOTE: No committed entries from the next Ready may be applied until all committed entries
   132  	// and snapshots from the previous one have finished.
   133  	Ready() <-chan Ready
   134  
   135  	// Advance notifies the Node that the application has saved progress up to the last Ready.
   136  	// It prepares the node to return the next available Ready.
   137  	//
   138  	// The application should generally call Advance after it applies the entries in last Ready.
   139  	//
   140  	// However, as an optimization, the application may call Advance while it is applying the
   141  	// commands. For example. when the last Ready contains a snapshot, the application might take
   142  	// a long time to apply the snapshot data. To continue receiving Ready without blocking raft
   143  	// progress, it can call Advance before finishing applying the last ready.
   144  	Advance()
   145  	// ApplyConfChange applies config change to the local node.
   146  	// Returns an opaque ConfState protobuf which must be recorded
   147  	// in snapshots. Will never return nil; it returns a pointer only
   148  	// to match MemoryStorage.Compact.
   149  	ApplyConfChange(cc pb.ConfChange) *pb.ConfState
   150  
   151  	// TransferLeadership attempts to transfer leadership to the given transferee.
   152  	TransferLeadership(ctx context.Context, lead, transferee uint64)
   153  
   154  	// ReadIndex request a read state. The read state will be set in the ready.
   155  	// Read state has a read index. Once the application advances further than the read
   156  	// index, any linearizable read requests issued before the read request can be
   157  	// processed safely. The read state will have the same rctx attached.
   158  	ReadIndex(ctx context.Context, rctx []byte) error
   159  
   160  	// Status returns the current status of the raft state machine.
   161  	Status() Status
   162  	// ReportUnreachable reports the given node is not reachable for the last send.
   163  	ReportUnreachable(id uint64)
   164  	// ReportSnapshot reports the status of the sent snapshot.
   165  	ReportSnapshot(id uint64, status SnapshotStatus)
   166  	// Stop performs any necessary termination of the Node.
   167  	Stop()
   168  }
   169  
   170  type Peer struct {
   171  	ID      uint64
   172  	Context []byte
   173  }
   174  
   175  // StartNode returns a new Node given configuration and a list of raft peers.
   176  // It appends a ConfChangeAddNode entry for each given peer to the initial log.
   177  func StartNode(c *Config, peers []Peer) Node {
   178  	r := newRaft(c)
   179  	// become the follower at term 1 and apply initial configuration
   180  	// entries of term 1
   181  	r.becomeFollower(1, None)
   182  	for _, peer := range peers {
   183  		cc := pb.ConfChange{Type: pb.ConfChangeAddNode, NodeID: peer.ID, Context: peer.Context}
   184  		d, err := cc.Marshal()
   185  		if err != nil {
   186  			panic("unexpected marshal error")
   187  		}
   188  		e := pb.Entry{Type: pb.EntryConfChange, Term: 1, Index: r.raftLog.lastIndex() + 1, Data: d}
   189  		r.raftLog.append(e)
   190  	}
   191  	// Mark these initial entries as committed.
   192  	// TODO(bdarnell): These entries are still unstable; do we need to preserve
   193  	// the invariant that committed < unstable?
   194  	r.raftLog.committed = r.raftLog.lastIndex()
   195  	// Now apply them, mainly so that the application can call Campaign
   196  	// immediately after StartNode in tests. Note that these nodes will
   197  	// be added to raft twice: here and when the application's Ready
   198  	// loop calls ApplyConfChange. The calls to addNode must come after
   199  	// all calls to raftLog.append so progress.next is set after these
   200  	// bootstrapping entries (it is an error if we try to append these
   201  	// entries since they have already been committed).
   202  	// We do not set raftLog.applied so the application will be able
   203  	// to observe all conf changes via Ready.CommittedEntries.
   204  	for _, peer := range peers {
   205  		r.addNode(peer.ID)
   206  	}
   207  
   208  	n := newNode()
   209  	n.logger = c.Logger
   210  	go n.run(r)
   211  	return &n
   212  }
   213  
   214  // RestartNode is similar to StartNode but does not take a list of peers.
   215  // The current membership of the cluster will be restored from the Storage.
   216  // If the caller has an existing state machine, pass in the last log index that
   217  // has been applied to it; otherwise use zero.
   218  func RestartNode(c *Config) Node {
   219  	r := newRaft(c)
   220  
   221  	n := newNode()
   222  	n.logger = c.Logger
   223  	go n.run(r)
   224  	return &n
   225  }
   226  
   227  // node is the canonical implementation of the Node interface
   228  type node struct {
   229  	propc      chan pb.Message
   230  	recvc      chan pb.Message
   231  	confc      chan pb.ConfChange
   232  	confstatec chan pb.ConfState
   233  	readyc     chan Ready
   234  	advancec   chan struct{}
   235  	tickc      chan struct{}
   236  	done       chan struct{}
   237  	stop       chan struct{}
   238  	status     chan chan Status
   239  
   240  	logger Logger
   241  }
   242  
   243  func newNode() node {
   244  	return node{
   245  		propc:      make(chan pb.Message),
   246  		recvc:      make(chan pb.Message),
   247  		confc:      make(chan pb.ConfChange),
   248  		confstatec: make(chan pb.ConfState),
   249  		readyc:     make(chan Ready),
   250  		advancec:   make(chan struct{}),
   251  		// make tickc a buffered chan, so raft node can buffer some ticks when the node
   252  		// is busy processing raft messages. Raft node will resume process buffered
   253  		// ticks when it becomes idle.
   254  		tickc:  make(chan struct{}, 128),
   255  		done:   make(chan struct{}),
   256  		stop:   make(chan struct{}),
   257  		status: make(chan chan Status),
   258  	}
   259  }
   260  
   261  func (n *node) Stop() {
   262  	select {
   263  	case n.stop <- struct{}{}:
   264  		// Not already stopped, so trigger it
   265  	case <-n.done:
   266  		// Node has already been stopped - no need to do anything
   267  		return
   268  	}
   269  	// Block until the stop has been acknowledged by run()
   270  	<-n.done
   271  }
   272  
   273  func (n *node) run(r *raft) {
   274  	var propc chan pb.Message
   275  	var readyc chan Ready
   276  	var advancec chan struct{}
   277  	var prevLastUnstablei, prevLastUnstablet uint64
   278  	var havePrevLastUnstablei bool
   279  	var prevSnapi uint64
   280  	var rd Ready
   281  
   282  	lead := None
   283  	prevSoftSt := r.softState()
   284  	prevHardSt := emptyState
   285  
   286  	for {
   287  		if advancec != nil {
   288  			readyc = nil
   289  		} else {
   290  			rd = newReady(r, prevSoftSt, prevHardSt)
   291  			if rd.containsUpdates() {
   292  				readyc = n.readyc
   293  			} else {
   294  				readyc = nil
   295  			}
   296  		}
   297  
   298  		if lead != r.lead {
   299  			if r.hasLeader() {
   300  				if lead == None {
   301  					r.logger.Infof("raft.node: %x elected leader %x at term %d", r.id, r.lead, r.Term)
   302  				} else {
   303  					r.logger.Infof("raft.node: %x changed leader from %x to %x at term %d", r.id, lead, r.lead, r.Term)
   304  				}
   305  				propc = n.propc
   306  			} else {
   307  				r.logger.Infof("raft.node: %x lost leader %x at term %d", r.id, lead, r.Term)
   308  				propc = nil
   309  			}
   310  			lead = r.lead
   311  		}
   312  
   313  		select {
   314  		// TODO: maybe buffer the config propose if there exists one (the way
   315  		// described in raft dissertation)
   316  		// Currently it is dropped in Step silently.
   317  		case m := <-propc:
   318  			m.From = r.id
   319  			r.Step(m)
   320  		case m := <-n.recvc:
   321  			// filter out response message from unknown From.
   322  			if pr := r.getProgress(m.From); pr != nil || !IsResponseMsg(m.Type) {
   323  				r.Step(m) // raft never returns an error
   324  			}
   325  		case cc := <-n.confc:
   326  			if cc.NodeID == None {
   327  				r.resetPendingConf()
   328  				select {
   329  				case n.confstatec <- pb.ConfState{Nodes: r.nodes()}:
   330  				case <-n.done:
   331  				}
   332  				break
   333  			}
   334  			switch cc.Type {
   335  			case pb.ConfChangeAddNode:
   336  				r.addNode(cc.NodeID)
   337  			case pb.ConfChangeAddLearnerNode:
   338  				r.addLearner(cc.NodeID)
   339  			case pb.ConfChangeRemoveNode:
   340  				// block incoming proposal when local node is
   341  				// removed
   342  				if cc.NodeID == r.id {
   343  					propc = nil
   344  				}
   345  				r.removeNode(cc.NodeID)
   346  			case pb.ConfChangeUpdateNode:
   347  				r.resetPendingConf()
   348  			default:
   349  				panic("unexpected conf type")
   350  			}
   351  			select {
   352  			case n.confstatec <- pb.ConfState{Nodes: r.nodes()}:
   353  			case <-n.done:
   354  			}
   355  		case <-n.tickc:
   356  			r.tick()
   357  		case readyc <- rd:
   358  			if rd.SoftState != nil {
   359  				prevSoftSt = rd.SoftState
   360  			}
   361  			if len(rd.Entries) > 0 {
   362  				prevLastUnstablei = rd.Entries[len(rd.Entries)-1].Index
   363  				prevLastUnstablet = rd.Entries[len(rd.Entries)-1].Term
   364  				havePrevLastUnstablei = true
   365  			}
   366  			if !IsEmptyHardState(rd.HardState) {
   367  				prevHardSt = rd.HardState
   368  			}
   369  			if !IsEmptySnap(rd.Snapshot) {
   370  				prevSnapi = rd.Snapshot.Metadata.Index
   371  			}
   372  
   373  			r.msgs = nil
   374  			r.readStates = nil
   375  			advancec = n.advancec
   376  		case <-advancec:
   377  			if prevHardSt.Commit != 0 {
   378  				r.raftLog.appliedTo(prevHardSt.Commit)
   379  			}
   380  			if havePrevLastUnstablei {
   381  				r.raftLog.stableTo(prevLastUnstablei, prevLastUnstablet)
   382  				havePrevLastUnstablei = false
   383  			}
   384  			r.raftLog.stableSnapTo(prevSnapi)
   385  			advancec = nil
   386  		case c := <-n.status:
   387  			c <- getStatus(r)
   388  		case <-n.stop:
   389  			close(n.done)
   390  			return
   391  		}
   392  	}
   393  }
   394  
   395  // Tick increments the internal logical clock for this Node. Election timeouts
   396  // and heartbeat timeouts are in units of ticks.
   397  func (n *node) Tick() {
   398  	select {
   399  	case n.tickc <- struct{}{}:
   400  	case <-n.done:
   401  	default:
   402  		n.logger.Warningf("A tick missed to fire. Node blocks too long!")
   403  	}
   404  }
   405  
   406  func (n *node) Campaign(ctx context.Context) error { return n.step(ctx, pb.Message{Type: pb.MsgHup}) }
   407  
   408  func (n *node) Propose(ctx context.Context, data []byte) error {
   409  	return n.step(ctx, pb.Message{Type: pb.MsgProp, Entries: []pb.Entry{{Data: data}}})
   410  }
   411  
   412  func (n *node) Step(ctx context.Context, m pb.Message) error {
   413  	// ignore unexpected local messages receiving over network
   414  	if IsLocalMsg(m.Type) {
   415  		// TODO: return an error?
   416  		return nil
   417  	}
   418  	return n.step(ctx, m)
   419  }
   420  
   421  func (n *node) ProposeConfChange(ctx context.Context, cc pb.ConfChange) error {
   422  	data, err := cc.Marshal()
   423  	if err != nil {
   424  		return err
   425  	}
   426  	return n.Step(ctx, pb.Message{Type: pb.MsgProp, Entries: []pb.Entry{{Type: pb.EntryConfChange, Data: data}}})
   427  }
   428  
   429  // Step advances the state machine using msgs. The ctx.Err() will be returned,
   430  // if any.
   431  func (n *node) step(ctx context.Context, m pb.Message) error {
   432  	ch := n.recvc
   433  	if m.Type == pb.MsgProp {
   434  		ch = n.propc
   435  	}
   436  
   437  	select {
   438  	case ch <- m:
   439  		return nil
   440  	case <-ctx.Done():
   441  		return ctx.Err()
   442  	case <-n.done:
   443  		return ErrStopped
   444  	}
   445  }
   446  
   447  func (n *node) Ready() <-chan Ready { return n.readyc }
   448  
   449  func (n *node) Advance() {
   450  	select {
   451  	case n.advancec <- struct{}{}:
   452  	case <-n.done:
   453  	}
   454  }
   455  
   456  func (n *node) ApplyConfChange(cc pb.ConfChange) *pb.ConfState {
   457  	var cs pb.ConfState
   458  	select {
   459  	case n.confc <- cc:
   460  	case <-n.done:
   461  	}
   462  	select {
   463  	case cs = <-n.confstatec:
   464  	case <-n.done:
   465  	}
   466  	return &cs
   467  }
   468  
   469  func (n *node) Status() Status {
   470  	c := make(chan Status)
   471  	select {
   472  	case n.status <- c:
   473  		return <-c
   474  	case <-n.done:
   475  		return Status{}
   476  	}
   477  }
   478  
   479  func (n *node) ReportUnreachable(id uint64) {
   480  	select {
   481  	case n.recvc <- pb.Message{Type: pb.MsgUnreachable, From: id}:
   482  	case <-n.done:
   483  	}
   484  }
   485  
   486  func (n *node) ReportSnapshot(id uint64, status SnapshotStatus) {
   487  	rej := status == SnapshotFailure
   488  
   489  	select {
   490  	case n.recvc <- pb.Message{Type: pb.MsgSnapStatus, From: id, Reject: rej}:
   491  	case <-n.done:
   492  	}
   493  }
   494  
   495  func (n *node) TransferLeadership(ctx context.Context, lead, transferee uint64) {
   496  	select {
   497  	// manually set 'from' and 'to', so that leader can voluntarily transfers its leadership
   498  	case n.recvc <- pb.Message{Type: pb.MsgTransferLeader, From: transferee, To: lead}:
   499  	case <-n.done:
   500  	case <-ctx.Done():
   501  	}
   502  }
   503  
   504  func (n *node) ReadIndex(ctx context.Context, rctx []byte) error {
   505  	return n.step(ctx, pb.Message{Type: pb.MsgReadIndex, Entries: []pb.Entry{{Data: rctx}}})
   506  }
   507  
   508  func newReady(r *raft, prevSoftSt *SoftState, prevHardSt pb.HardState) Ready {
   509  	rd := Ready{
   510  		Entries:          r.raftLog.unstableEntries(),
   511  		CommittedEntries: r.raftLog.nextEnts(),
   512  		Messages:         r.msgs,
   513  	}
   514  	if softSt := r.softState(); !softSt.equal(prevSoftSt) {
   515  		rd.SoftState = softSt
   516  	}
   517  	if hardSt := r.hardState(); !isHardStateEqual(hardSt, prevHardSt) {
   518  		rd.HardState = hardSt
   519  	}
   520  	if r.raftLog.unstable.snapshot != nil {
   521  		rd.Snapshot = *r.raftLog.unstable.snapshot
   522  	}
   523  	if len(r.readStates) != 0 {
   524  		rd.ReadStates = r.readStates
   525  	}
   526  	rd.MustSync = MustSync(rd.HardState, prevHardSt, len(rd.Entries))
   527  	return rd
   528  }
   529  
   530  // MustSync returns true if the hard state and count of Raft entries indicate
   531  // that a synchronous write to persistent storage is required.
   532  func MustSync(st, prevst pb.HardState, entsnum int) bool {
   533  	// Persistent state on all servers:
   534  	// (Updated on stable storage before responding to RPCs)
   535  	// currentTerm
   536  	// votedFor
   537  	// log entries[]
   538  	return entsnum != 0 || st.Vote != prevst.Vote || st.Term != prevst.Term
   539  }