go.uber.org/yarpc@v1.72.1/internal/backoff/exponential.go (about) 1 // Copyright (c) 2022 Uber Technologies, Inc. 2 // 3 // Permission is hereby granted, free of charge, to any person obtaining a copy 4 // of this software and associated documentation files (the "Software"), to deal 5 // in the Software without restriction, including without limitation the rights 6 // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 7 // copies of the Software, and to permit persons to whom the Software is 8 // furnished to do so, subject to the following conditions: 9 // 10 // The above copyright notice and this permission notice shall be included in 11 // all copies or substantial portions of the Software. 12 // 13 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 16 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 17 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 18 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 19 // THE SOFTWARE. 20 21 package backoff 22 23 import ( 24 "errors" 25 "math/rand" 26 "time" 27 28 "go.uber.org/multierr" 29 "go.uber.org/yarpc/api/backoff" 30 ) 31 32 var ( 33 errInvalidFirst = errors.New("invalid first duration for exponential backoff, need greater than zero") 34 errInvalidMax = errors.New("invalid max for exponential backoff, need greater than or equal to zero") 35 ) 36 37 // ExponentialOption defines options that can be applied to an 38 // exponential backoff strategy 39 type ExponentialOption func(*exponentialOptions) 40 41 // exponentialOptions are the configuration options for an exponential backoff 42 type exponentialOptions struct { 43 first, max time.Duration 44 newRand func() *rand.Rand 45 } 46 47 func (e exponentialOptions) validate() (err error) { 48 if e.first <= 0 { 49 err = multierr.Append(err, errInvalidFirst) 50 } 51 if e.max < 0 { 52 err = multierr.Append(err, errInvalidMax) 53 } 54 return err 55 } 56 57 func newRand() *rand.Rand { 58 return rand.New(rand.NewSource(time.Now().UnixNano())) 59 } 60 61 var defaultExponentialOpts = exponentialOptions{ 62 first: 10 * time.Millisecond, 63 max: time.Minute, 64 newRand: newRand, 65 } 66 67 // DefaultExponential is an exponential backoff.Strategy with full jitter. 68 // The first attempt has a range of 0 to 10ms and each successive attempt 69 // doubles the range of the possible delay. 70 // 71 // Exponential strategies are not thread safe. 72 // The Backoff() method returns a referentially independent backoff generator 73 // and random number generator. 74 var DefaultExponential = &ExponentialStrategy{ 75 opts: defaultExponentialOpts, 76 } 77 78 // FirstBackoff sets the initial range of durations that the first backoff 79 // duration will provide. 80 // The range of durations will double for each successive attempt. 81 func FirstBackoff(t time.Duration) ExponentialOption { 82 return func(options *exponentialOptions) { 83 options.first = t 84 } 85 } 86 87 // MaxBackoff sets absolute max time that will ever be returned for a backoff. 88 func MaxBackoff(t time.Duration) ExponentialOption { 89 return func(options *exponentialOptions) { 90 options.max = t 91 } 92 } 93 94 // randGenerator is an internal option for overriding the random number 95 // generator. 96 func randGenerator(newRand func() *rand.Rand) ExponentialOption { 97 return func(options *exponentialOptions) { 98 options.newRand = newRand 99 } 100 } 101 102 // ExponentialStrategy can create instances of the exponential backoff strategy 103 // with full jitter. 104 // Each instance has referentially independent random number generators. 105 type ExponentialStrategy struct { 106 opts exponentialOptions 107 } 108 109 var _ backoff.Strategy = (*ExponentialStrategy)(nil) 110 111 // NewExponential returns a new exponential backoff strategy, which in turn 112 // returns backoff functions. 113 // 114 // Exponential is an exponential backoff strategy with jitter. Under the 115 // AWS backoff strategies this is a "Full Jitter" backoff implementation 116 // https://www.awsarchitectureblog.com/2015/03/backoff.html with the addition 117 // of a Min and Max Value. The range of durations will be contained in 118 // a closed [Min, Max] interval. 119 // 120 // Backoff functions are lockless and referentially independent, but not 121 // thread-safe. 122 func NewExponential(opts ...ExponentialOption) (*ExponentialStrategy, error) { 123 options := defaultExponentialOpts 124 for _, opt := range opts { 125 opt(&options) 126 } 127 128 if err := options.validate(); err != nil { 129 return nil, err 130 } 131 132 return &ExponentialStrategy{ 133 opts: options, 134 }, nil 135 } 136 137 // Backoff returns an instance of the exponential backoff strategy with its own 138 // random number generator. 139 func (e *ExponentialStrategy) Backoff() backoff.Backoff { 140 return &exponentialBackoff{ 141 first: e.opts.first, 142 max: e.opts.max.Nanoseconds(), 143 rand: e.opts.newRand(), 144 } 145 } 146 147 // IsEqual returns whether this strategy is equivalent to another strategy. 148 func (e *ExponentialStrategy) IsEqual(o *ExponentialStrategy) bool { 149 if e.opts.first != o.opts.first { 150 return false 151 } 152 if e.opts.max != o.opts.max { 153 return false 154 } 155 return true 156 } 157 158 // ExponentialBackoff is an instance of the exponential backoff strategy with 159 // full jitter. 160 type exponentialBackoff struct { 161 first time.Duration 162 max int64 163 rand *rand.Rand 164 } 165 166 // Duration takes an attempt number and returns the duration the caller should 167 // wait. 168 func (e *exponentialBackoff) Duration(attempts uint) time.Duration { 169 spread := (1 << attempts) * e.first.Nanoseconds() 170 if spread <= 0 || spread > e.max { 171 spread = e.max 172 } 173 // Adding 1 to the spread ensures that the upper bound of the range of 174 // possible durations includes the maximum. 175 return time.Duration(e.rand.Int63n(spread + 1)) 176 }