golang.org/toolchain@v0.0.1-go1.9rc2.windows-amd64/src/runtime/sqrt.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Copy of math/sqrt.go, here for use by ARM softfloat.
     6  // Modified to not use any floating point arithmetic so
     7  // that we don't clobber any floating-point registers
     8  // while emulating the sqrt instruction.
     9  
    10  package runtime
    11  
    12  // The original C code and the long comment below are
    13  // from FreeBSD's /usr/src/lib/msun/src/e_sqrt.c and
    14  // came with this notice. The go code is a simplified
    15  // version of the original C.
    16  //
    17  // ====================================================
    18  // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
    19  //
    20  // Developed at SunPro, a Sun Microsystems, Inc. business.
    21  // Permission to use, copy, modify, and distribute this
    22  // software is freely granted, provided that this notice
    23  // is preserved.
    24  // ====================================================
    25  //
    26  // __ieee754_sqrt(x)
    27  // Return correctly rounded sqrt.
    28  //           -----------------------------------------
    29  //           | Use the hardware sqrt if you have one |
    30  //           -----------------------------------------
    31  // Method:
    32  //   Bit by bit method using integer arithmetic. (Slow, but portable)
    33  //   1. Normalization
    34  //      Scale x to y in [1,4) with even powers of 2:
    35  //      find an integer k such that  1 <= (y=x*2**(2k)) < 4, then
    36  //              sqrt(x) = 2**k * sqrt(y)
    37  //   2. Bit by bit computation
    38  //      Let q  = sqrt(y) truncated to i bit after binary point (q = 1),
    39  //           i                                                   0
    40  //                                     i+1         2
    41  //          s  = 2*q , and      y  =  2   * ( y - q  ).          (1)
    42  //           i      i            i                 i
    43  //
    44  //      To compute q    from q , one checks whether
    45  //                  i+1       i
    46  //
    47  //                            -(i+1) 2
    48  //                      (q + 2      )  <= y.                     (2)
    49  //                        i
    50  //                                                            -(i+1)
    51  //      If (2) is false, then q   = q ; otherwise q   = q  + 2      .
    52  //                             i+1   i             i+1   i
    53  //
    54  //      With some algebraic manipulation, it is not difficult to see
    55  //      that (2) is equivalent to
    56  //                             -(i+1)
    57  //                      s  +  2       <= y                       (3)
    58  //                       i                i
    59  //
    60  //      The advantage of (3) is that s  and y  can be computed by
    61  //                                    i      i
    62  //      the following recurrence formula:
    63  //          if (3) is false
    64  //
    65  //          s     =  s  ,       y    = y   ;                     (4)
    66  //           i+1      i          i+1    i
    67  //
    68  //      otherwise,
    69  //                         -i                      -(i+1)
    70  //          s     =  s  + 2  ,  y    = y  -  s  - 2              (5)
    71  //           i+1      i          i+1    i     i
    72  //
    73  //      One may easily use induction to prove (4) and (5).
    74  //      Note. Since the left hand side of (3) contain only i+2 bits,
    75  //            it does not necessary to do a full (53-bit) comparison
    76  //            in (3).
    77  //   3. Final rounding
    78  //      After generating the 53 bits result, we compute one more bit.
    79  //      Together with the remainder, we can decide whether the
    80  //      result is exact, bigger than 1/2ulp, or less than 1/2ulp
    81  //      (it will never equal to 1/2ulp).
    82  //      The rounding mode can be detected by checking whether
    83  //      huge + tiny is equal to huge, and whether huge - tiny is
    84  //      equal to huge for some floating point number "huge" and "tiny".
    85  //
    86  //
    87  // Notes:  Rounding mode detection omitted.
    88  
    89  const (
    90  	float64Mask  = 0x7FF
    91  	float64Shift = 64 - 11 - 1
    92  	float64Bias  = 1023
    93  	float64NaN   = 0x7FF8000000000001
    94  	float64Inf   = 0x7FF0000000000000
    95  	maxFloat64   = 1.797693134862315708145274237317043567981e+308 // 2**1023 * (2**53 - 1) / 2**52
    96  )
    97  
    98  // isnanu returns whether ix represents a NaN floating point number.
    99  func isnanu(ix uint64) bool {
   100  	exp := (ix >> float64Shift) & float64Mask
   101  	sig := ix << (64 - float64Shift) >> (64 - float64Shift)
   102  	return exp == float64Mask && sig != 0
   103  }
   104  
   105  func sqrt(ix uint64) uint64 {
   106  	// special cases
   107  	switch {
   108  	case ix == 0 || ix == 1<<63: // x == 0
   109  		return ix
   110  	case isnanu(ix): // x != x
   111  		return ix
   112  	case ix&(1<<63) != 0: // x < 0
   113  		return float64NaN
   114  	case ix == float64Inf: // x > MaxFloat
   115  		return ix
   116  	}
   117  	// normalize x
   118  	exp := int((ix >> float64Shift) & float64Mask)
   119  	if exp == 0 { // subnormal x
   120  		for ix&(1<<float64Shift) == 0 {
   121  			ix <<= 1
   122  			exp--
   123  		}
   124  		exp++
   125  	}
   126  	exp -= float64Bias // unbias exponent
   127  	ix &^= float64Mask << float64Shift
   128  	ix |= 1 << float64Shift
   129  	if exp&1 == 1 { // odd exp, double x to make it even
   130  		ix <<= 1
   131  	}
   132  	exp >>= 1 // exp = exp/2, exponent of square root
   133  	// generate sqrt(x) bit by bit
   134  	ix <<= 1
   135  	var q, s uint64                      // q = sqrt(x)
   136  	r := uint64(1 << (float64Shift + 1)) // r = moving bit from MSB to LSB
   137  	for r != 0 {
   138  		t := s + r
   139  		if t <= ix {
   140  			s = t + r
   141  			ix -= t
   142  			q += r
   143  		}
   144  		ix <<= 1
   145  		r >>= 1
   146  	}
   147  	// final rounding
   148  	if ix != 0 { // remainder, result not exact
   149  		q += q & 1 // round according to extra bit
   150  	}
   151  	ix = q>>1 + uint64(exp-1+float64Bias)<<float64Shift // significand + biased exponent
   152  	return ix
   153  }