golang.org/x/exp@v0.0.0-20240506185415-9bf2ced13842/rand/rand.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Package rand implements pseudo-random number generators. 6 // 7 // Random numbers are generated by a Source. Top-level functions, such as 8 // Float64 and Int, use a default shared Source that produces a deterministic 9 // sequence of values each time a program is run. Use the Seed function to 10 // initialize the default Source if different behavior is required for each run. 11 // The default Source, a LockedSource, is safe for concurrent use by multiple 12 // goroutines, but Sources created by NewSource are not. However, Sources are small 13 // and it is reasonable to have a separate Source for each goroutine, seeded 14 // differently, to avoid locking. 15 // 16 // For random numbers suitable for security-sensitive work, see the crypto/rand 17 // package. 18 package rand 19 20 import "sync" 21 22 // A Source represents a source of uniformly-distributed 23 // pseudo-random int64 values in the range [0, 1<<64). 24 type Source interface { 25 Uint64() uint64 26 Seed(seed uint64) 27 } 28 29 // NewSource returns a new pseudo-random Source seeded with the given value. 30 func NewSource(seed uint64) Source { 31 var rng PCGSource 32 rng.Seed(seed) 33 return &rng 34 } 35 36 // A Rand is a source of random numbers. 37 type Rand struct { 38 src Source 39 40 // readVal contains remainder of 64-bit integer used for bytes 41 // generation during most recent Read call. 42 // It is saved so next Read call can start where the previous 43 // one finished. 44 readVal uint64 45 // readPos indicates the number of low-order bytes of readVal 46 // that are still valid. 47 readPos int8 48 } 49 50 // New returns a new Rand that uses random values from src 51 // to generate other random values. 52 func New(src Source) *Rand { 53 return &Rand{src: src} 54 } 55 56 // Seed uses the provided seed value to initialize the generator to a deterministic state. 57 // Seed should not be called concurrently with any other Rand method. 58 func (r *Rand) Seed(seed uint64) { 59 if lk, ok := r.src.(*LockedSource); ok { 60 lk.seedPos(seed, &r.readPos) 61 return 62 } 63 64 r.src.Seed(seed) 65 r.readPos = 0 66 } 67 68 // Uint64 returns a pseudo-random 64-bit integer as a uint64. 69 func (r *Rand) Uint64() uint64 { return r.src.Uint64() } 70 71 // Int63 returns a non-negative pseudo-random 63-bit integer as an int64. 72 func (r *Rand) Int63() int64 { return int64(r.src.Uint64() &^ (1 << 63)) } 73 74 // Uint32 returns a pseudo-random 32-bit value as a uint32. 75 func (r *Rand) Uint32() uint32 { return uint32(r.Uint64() >> 32) } 76 77 // Int31 returns a non-negative pseudo-random 31-bit integer as an int32. 78 func (r *Rand) Int31() int32 { return int32(r.Uint64() >> 33) } 79 80 // Int returns a non-negative pseudo-random int. 81 func (r *Rand) Int() int { 82 u := uint(r.Uint64()) 83 return int(u << 1 >> 1) // clear sign bit. 84 } 85 86 const maxUint64 = (1 << 64) - 1 87 88 // Uint64n returns, as a uint64, a pseudo-random number in [0,n). 89 // It is guaranteed more uniform than taking a Source value mod n 90 // for any n that is not a power of 2. 91 func (r *Rand) Uint64n(n uint64) uint64 { 92 if n&(n-1) == 0 { // n is power of two, can mask 93 if n == 0 { 94 panic("invalid argument to Uint64n") 95 } 96 return r.Uint64() & (n - 1) 97 } 98 // If n does not divide v, to avoid bias we must not use 99 // a v that is within maxUint64%n of the top of the range. 100 v := r.Uint64() 101 if v > maxUint64-n { // Fast check. 102 ceiling := maxUint64 - maxUint64%n 103 for v >= ceiling { 104 v = r.Uint64() 105 } 106 } 107 108 return v % n 109 } 110 111 // Int63n returns, as an int64, a non-negative pseudo-random number in [0,n). 112 // It panics if n <= 0. 113 func (r *Rand) Int63n(n int64) int64 { 114 if n <= 0 { 115 panic("invalid argument to Int63n") 116 } 117 return int64(r.Uint64n(uint64(n))) 118 } 119 120 // Int31n returns, as an int32, a non-negative pseudo-random number in [0,n). 121 // It panics if n <= 0. 122 func (r *Rand) Int31n(n int32) int32 { 123 if n <= 0 { 124 panic("invalid argument to Int31n") 125 } 126 // TODO: Avoid some 64-bit ops to make it more efficient on 32-bit machines. 127 return int32(r.Uint64n(uint64(n))) 128 } 129 130 // Intn returns, as an int, a non-negative pseudo-random number in [0,n). 131 // It panics if n <= 0. 132 func (r *Rand) Intn(n int) int { 133 if n <= 0 { 134 panic("invalid argument to Intn") 135 } 136 // TODO: Avoid some 64-bit ops to make it more efficient on 32-bit machines. 137 return int(r.Uint64n(uint64(n))) 138 } 139 140 // Float64 returns, as a float64, a pseudo-random number in [0.0,1.0). 141 func (r *Rand) Float64() float64 { 142 // There is one bug in the value stream: r.Int63() may be so close 143 // to 1<<63 that the division rounds up to 1.0, and we've guaranteed 144 // that the result is always less than 1.0. 145 // 146 // We tried to fix this by mapping 1.0 back to 0.0, but since float64 147 // values near 0 are much denser than near 1, mapping 1 to 0 caused 148 // a theoretically significant overshoot in the probability of returning 0. 149 // Instead of that, if we round up to 1, just try again. 150 // Getting 1 only happens 1/2⁵³ of the time, so most clients 151 // will not observe it anyway. 152 again: 153 f := float64(r.Uint64n(1<<53)) / (1 << 53) 154 if f == 1.0 { 155 goto again // resample; this branch is taken O(never) 156 } 157 return f 158 } 159 160 // Float32 returns, as a float32, a pseudo-random number in [0.0,1.0). 161 func (r *Rand) Float32() float32 { 162 // We do not want to return 1.0. 163 // This only happens 1/2²⁴ of the time (plus the 1/2⁵³ of the time in Float64). 164 again: 165 f := float32(r.Float64()) 166 if f == 1 { 167 goto again // resample; this branch is taken O(very rarely) 168 } 169 return f 170 } 171 172 // Perm returns, as a slice of n ints, a pseudo-random permutation of the integers [0,n). 173 func (r *Rand) Perm(n int) []int { 174 m := make([]int, n) 175 // In the following loop, the iteration when i=0 always swaps m[0] with m[0]. 176 // A change to remove this useless iteration is to assign 1 to i in the init 177 // statement. But Perm also effects r. Making this change will affect 178 // the final state of r. So this change can't be made for compatibility 179 // reasons for Go 1. 180 for i := 0; i < n; i++ { 181 j := r.Intn(i + 1) 182 m[i] = m[j] 183 m[j] = i 184 } 185 return m 186 } 187 188 // Shuffle pseudo-randomizes the order of elements. 189 // n is the number of elements. Shuffle panics if n < 0. 190 // swap swaps the elements with indexes i and j. 191 func (r *Rand) Shuffle(n int, swap func(i, j int)) { 192 if n < 0 { 193 panic("invalid argument to Shuffle") 194 } 195 196 // Fisher-Yates shuffle: https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle 197 // Shuffle really ought not be called with n that doesn't fit in 32 bits. 198 // Not only will it take a very long time, but with 2³¹! possible permutations, 199 // there's no way that any PRNG can have a big enough internal state to 200 // generate even a minuscule percentage of the possible permutations. 201 // Nevertheless, the right API signature accepts an int n, so handle it as best we can. 202 i := n - 1 203 for ; i > 1<<31-1-1; i-- { 204 j := int(r.Int63n(int64(i + 1))) 205 swap(i, j) 206 } 207 for ; i > 0; i-- { 208 j := int(r.Int31n(int32(i + 1))) 209 swap(i, j) 210 } 211 } 212 213 // Read generates len(p) random bytes and writes them into p. It 214 // always returns len(p) and a nil error. 215 // Read should not be called concurrently with any other Rand method unless 216 // the underlying source is a LockedSource. 217 func (r *Rand) Read(p []byte) (n int, err error) { 218 if lk, ok := r.src.(*LockedSource); ok { 219 return lk.Read(p, &r.readVal, &r.readPos) 220 } 221 return read(p, r.src, &r.readVal, &r.readPos) 222 } 223 224 func read(p []byte, src Source, readVal *uint64, readPos *int8) (n int, err error) { 225 pos := *readPos 226 val := *readVal 227 rng, _ := src.(*PCGSource) 228 for n = 0; n < len(p); n++ { 229 if pos == 0 { 230 if rng != nil { 231 val = rng.Uint64() 232 } else { 233 val = src.Uint64() 234 } 235 pos = 8 236 } 237 p[n] = byte(val) 238 val >>= 8 239 pos-- 240 } 241 *readPos = pos 242 *readVal = val 243 return 244 } 245 246 /* 247 * Top-level convenience functions 248 */ 249 250 var globalRand = New(&LockedSource{src: *NewSource(1).(*PCGSource)}) 251 252 // Type assert that globalRand's source is a LockedSource whose src is a PCGSource. 253 var _ PCGSource = globalRand.src.(*LockedSource).src 254 255 // Seed uses the provided seed value to initialize the default Source to a 256 // deterministic state. If Seed is not called, the generator behaves as 257 // if seeded by Seed(1). 258 // Seed, unlike the Rand.Seed method, is safe for concurrent use. 259 func Seed(seed uint64) { globalRand.Seed(seed) } 260 261 // Int63 returns a non-negative pseudo-random 63-bit integer as an int64 262 // from the default Source. 263 func Int63() int64 { return globalRand.Int63() } 264 265 // Uint32 returns a pseudo-random 32-bit value as a uint32 266 // from the default Source. 267 func Uint32() uint32 { return globalRand.Uint32() } 268 269 // Uint64 returns a pseudo-random 64-bit value as a uint64 270 // from the default Source. 271 func Uint64() uint64 { return globalRand.Uint64() } 272 273 // Int31 returns a non-negative pseudo-random 31-bit integer as an int32 274 // from the default Source. 275 func Int31() int32 { return globalRand.Int31() } 276 277 // Int returns a non-negative pseudo-random int from the default Source. 278 func Int() int { return globalRand.Int() } 279 280 // Int63n returns, as an int64, a non-negative pseudo-random number in [0,n) 281 // from the default Source. 282 // It panics if n <= 0. 283 func Int63n(n int64) int64 { return globalRand.Int63n(n) } 284 285 // Int31n returns, as an int32, a non-negative pseudo-random number in [0,n) 286 // from the default Source. 287 // It panics if n <= 0. 288 func Int31n(n int32) int32 { return globalRand.Int31n(n) } 289 290 // Intn returns, as an int, a non-negative pseudo-random number in [0,n) 291 // from the default Source. 292 // It panics if n <= 0. 293 func Intn(n int) int { return globalRand.Intn(n) } 294 295 // Float64 returns, as a float64, a pseudo-random number in [0.0,1.0) 296 // from the default Source. 297 func Float64() float64 { return globalRand.Float64() } 298 299 // Float32 returns, as a float32, a pseudo-random number in [0.0,1.0) 300 // from the default Source. 301 func Float32() float32 { return globalRand.Float32() } 302 303 // Perm returns, as a slice of n ints, a pseudo-random permutation of the integers [0,n) 304 // from the default Source. 305 func Perm(n int) []int { return globalRand.Perm(n) } 306 307 // Shuffle pseudo-randomizes the order of elements using the default Source. 308 // n is the number of elements. Shuffle panics if n < 0. 309 // swap swaps the elements with indexes i and j. 310 func Shuffle(n int, swap func(i, j int)) { globalRand.Shuffle(n, swap) } 311 312 // Read generates len(p) random bytes from the default Source and 313 // writes them into p. It always returns len(p) and a nil error. 314 // Read, unlike the Rand.Read method, is safe for concurrent use. 315 func Read(p []byte) (n int, err error) { return globalRand.Read(p) } 316 317 // NormFloat64 returns a normally distributed float64 in the range 318 // [-math.MaxFloat64, +math.MaxFloat64] with 319 // standard normal distribution (mean = 0, stddev = 1) 320 // from the default Source. 321 // To produce a different normal distribution, callers can 322 // adjust the output using: 323 // 324 // sample = NormFloat64() * desiredStdDev + desiredMean 325 func NormFloat64() float64 { return globalRand.NormFloat64() } 326 327 // ExpFloat64 returns an exponentially distributed float64 in the range 328 // (0, +math.MaxFloat64] with an exponential distribution whose rate parameter 329 // (lambda) is 1 and whose mean is 1/lambda (1) from the default Source. 330 // To produce a distribution with a different rate parameter, 331 // callers can adjust the output using: 332 // 333 // sample = ExpFloat64() / desiredRateParameter 334 func ExpFloat64() float64 { return globalRand.ExpFloat64() } 335 336 // LockedSource is an implementation of Source that is concurrency-safe. 337 // A Rand using a LockedSource is safe for concurrent use. 338 // 339 // The zero value of LockedSource is valid, but should be seeded before use. 340 type LockedSource struct { 341 lk sync.Mutex 342 src PCGSource 343 } 344 345 func (s *LockedSource) Uint64() (n uint64) { 346 s.lk.Lock() 347 n = s.src.Uint64() 348 s.lk.Unlock() 349 return 350 } 351 352 func (s *LockedSource) Seed(seed uint64) { 353 s.lk.Lock() 354 s.src.Seed(seed) 355 s.lk.Unlock() 356 } 357 358 // seedPos implements Seed for a LockedSource without a race condiiton. 359 func (s *LockedSource) seedPos(seed uint64, readPos *int8) { 360 s.lk.Lock() 361 s.src.Seed(seed) 362 *readPos = 0 363 s.lk.Unlock() 364 } 365 366 // Read implements Read for a LockedSource. 367 func (s *LockedSource) Read(p []byte, readVal *uint64, readPos *int8) (n int, err error) { 368 s.lk.Lock() 369 n, err = read(p, &s.src, readVal, readPos) 370 s.lk.Unlock() 371 return 372 }