golang.org/x/tools@v0.21.1-0.20240520172518-788d39e776b1/go/ssa/func.go (about)

     1  // Copyright 2013 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package ssa
     6  
     7  // This file implements the Function type.
     8  
     9  import (
    10  	"bytes"
    11  	"fmt"
    12  	"go/ast"
    13  	"go/token"
    14  	"go/types"
    15  	"io"
    16  	"os"
    17  	"strings"
    18  
    19  	"golang.org/x/tools/internal/typeparams"
    20  )
    21  
    22  // Like ObjectOf, but panics instead of returning nil.
    23  // Only valid during f's create and build phases.
    24  func (f *Function) objectOf(id *ast.Ident) types.Object {
    25  	if o := f.info.ObjectOf(id); o != nil {
    26  		return o
    27  	}
    28  	panic(fmt.Sprintf("no types.Object for ast.Ident %s @ %s",
    29  		id.Name, f.Prog.Fset.Position(id.Pos())))
    30  }
    31  
    32  // Like TypeOf, but panics instead of returning nil.
    33  // Only valid during f's create and build phases.
    34  func (f *Function) typeOf(e ast.Expr) types.Type {
    35  	if T := f.info.TypeOf(e); T != nil {
    36  		return f.typ(T)
    37  	}
    38  	panic(fmt.Sprintf("no type for %T @ %s", e, f.Prog.Fset.Position(e.Pos())))
    39  }
    40  
    41  // typ is the locally instantiated type of T.
    42  // If f is not an instantiation, then f.typ(T)==T.
    43  func (f *Function) typ(T types.Type) types.Type {
    44  	return f.subst.typ(T)
    45  }
    46  
    47  // If id is an Instance, returns info.Instances[id].Type.
    48  // Otherwise returns f.typeOf(id).
    49  func (f *Function) instanceType(id *ast.Ident) types.Type {
    50  	if t, ok := f.info.Instances[id]; ok {
    51  		return t.Type
    52  	}
    53  	return f.typeOf(id)
    54  }
    55  
    56  // selection returns a *selection corresponding to f.info.Selections[selector]
    57  // with potential updates for type substitution.
    58  func (f *Function) selection(selector *ast.SelectorExpr) *selection {
    59  	sel := f.info.Selections[selector]
    60  	if sel == nil {
    61  		return nil
    62  	}
    63  
    64  	switch sel.Kind() {
    65  	case types.MethodExpr, types.MethodVal:
    66  		if recv := f.typ(sel.Recv()); recv != sel.Recv() {
    67  			// recv changed during type substitution.
    68  			pkg := f.declaredPackage().Pkg
    69  			obj, index, indirect := types.LookupFieldOrMethod(recv, true, pkg, sel.Obj().Name())
    70  
    71  			// sig replaces sel.Type(). See (types.Selection).Typ() for details.
    72  			sig := obj.Type().(*types.Signature)
    73  			sig = changeRecv(sig, newVar(sig.Recv().Name(), recv))
    74  			if sel.Kind() == types.MethodExpr {
    75  				sig = recvAsFirstArg(sig)
    76  			}
    77  			return &selection{
    78  				kind:     sel.Kind(),
    79  				recv:     recv,
    80  				typ:      sig,
    81  				obj:      obj,
    82  				index:    index,
    83  				indirect: indirect,
    84  			}
    85  		}
    86  	}
    87  	return toSelection(sel)
    88  }
    89  
    90  // Destinations associated with unlabelled for/switch/select stmts.
    91  // We push/pop one of these as we enter/leave each construct and for
    92  // each BranchStmt we scan for the innermost target of the right type.
    93  type targets struct {
    94  	tail         *targets // rest of stack
    95  	_break       *BasicBlock
    96  	_continue    *BasicBlock
    97  	_fallthrough *BasicBlock
    98  }
    99  
   100  // Destinations associated with a labelled block.
   101  // We populate these as labels are encountered in forward gotos or
   102  // labelled statements.
   103  // Forward gotos are resolved once it is known which statement they
   104  // are associated with inside the Function.
   105  type lblock struct {
   106  	label     *types.Label // Label targeted by the blocks.
   107  	resolved  bool         // _goto block encountered (back jump or resolved fwd jump)
   108  	_goto     *BasicBlock
   109  	_break    *BasicBlock
   110  	_continue *BasicBlock
   111  }
   112  
   113  // label returns the symbol denoted by a label identifier.
   114  //
   115  // label should be a non-blank identifier (label.Name != "_").
   116  func (f *Function) label(label *ast.Ident) *types.Label {
   117  	return f.objectOf(label).(*types.Label)
   118  }
   119  
   120  // lblockOf returns the branch target associated with the
   121  // specified label, creating it if needed.
   122  func (f *Function) lblockOf(label *types.Label) *lblock {
   123  	lb := f.lblocks[label]
   124  	if lb == nil {
   125  		lb = &lblock{
   126  			label: label,
   127  			_goto: f.newBasicBlock(label.Name()),
   128  		}
   129  		if f.lblocks == nil {
   130  			f.lblocks = make(map[*types.Label]*lblock)
   131  		}
   132  		f.lblocks[label] = lb
   133  	}
   134  	return lb
   135  }
   136  
   137  // labelledBlock searches f for the block of the specified label.
   138  //
   139  // If f is a yield function, it additionally searches ancestor Functions
   140  // corresponding to enclosing range-over-func statements within the
   141  // same source function, so the returned block may belong to a different Function.
   142  func labelledBlock(f *Function, label *types.Label, tok token.Token) *BasicBlock {
   143  	if lb := f.lblocks[label]; lb != nil {
   144  		var block *BasicBlock
   145  		switch tok {
   146  		case token.BREAK:
   147  			block = lb._break
   148  		case token.CONTINUE:
   149  			block = lb._continue
   150  		case token.GOTO:
   151  			block = lb._goto
   152  		}
   153  		if block != nil {
   154  			return block
   155  		}
   156  	}
   157  	// Search ancestors if this is a yield function.
   158  	if f.jump != nil {
   159  		return labelledBlock(f.parent, label, tok)
   160  	}
   161  	return nil
   162  }
   163  
   164  // targetedBlock looks for the nearest block in f.targets
   165  // (and f's ancestors) that matches tok's type, and returns
   166  // the block and function it was found in.
   167  func targetedBlock(f *Function, tok token.Token) *BasicBlock {
   168  	if f == nil {
   169  		return nil
   170  	}
   171  	for t := f.targets; t != nil; t = t.tail {
   172  		var block *BasicBlock
   173  		switch tok {
   174  		case token.BREAK:
   175  			block = t._break
   176  		case token.CONTINUE:
   177  			block = t._continue
   178  		case token.FALLTHROUGH:
   179  			block = t._fallthrough
   180  		}
   181  		if block != nil {
   182  			return block
   183  		}
   184  	}
   185  	// Search f's ancestors (in case f is a yield function).
   186  	return targetedBlock(f.parent, tok)
   187  }
   188  
   189  // addResultVar adds a result for a variable v to f.results and v to f.returnVars.
   190  func (f *Function) addResultVar(v *types.Var) {
   191  	name := v.Name()
   192  	if name == "" {
   193  		name = fmt.Sprintf("res%d", len(f.results))
   194  	}
   195  	result := emitLocalVar(f, v)
   196  	f.results = append(f.results, result)
   197  	f.returnVars = append(f.returnVars, v)
   198  }
   199  
   200  // addParamVar adds a parameter to f.Params.
   201  func (f *Function) addParamVar(v *types.Var) *Parameter {
   202  	name := v.Name()
   203  	if name == "" {
   204  		name = fmt.Sprintf("arg%d", len(f.Params))
   205  	}
   206  	param := &Parameter{
   207  		name:   name,
   208  		object: v,
   209  		typ:    f.typ(v.Type()),
   210  		parent: f,
   211  	}
   212  	f.Params = append(f.Params, param)
   213  	return param
   214  }
   215  
   216  // addSpilledParam declares a parameter that is pre-spilled to the
   217  // stack; the function body will load/store the spilled location.
   218  // Subsequent lifting will eliminate spills where possible.
   219  func (f *Function) addSpilledParam(obj *types.Var) {
   220  	param := f.addParamVar(obj)
   221  	spill := emitLocalVar(f, obj)
   222  	f.emit(&Store{Addr: spill, Val: param})
   223  }
   224  
   225  // startBody initializes the function prior to generating SSA code for its body.
   226  // Precondition: f.Type() already set.
   227  func (f *Function) startBody() {
   228  	f.currentBlock = f.newBasicBlock("entry")
   229  	f.vars = make(map[*types.Var]Value) // needed for some synthetics, e.g. init
   230  }
   231  
   232  // createSyntacticParams populates f.Params and generates code (spills
   233  // and named result locals) for all the parameters declared in the
   234  // syntax.  In addition it populates the f.objects mapping.
   235  //
   236  // Preconditions:
   237  // f.startBody() was called. f.info != nil.
   238  // Postcondition:
   239  // len(f.Params) == len(f.Signature.Params) + (f.Signature.Recv() ? 1 : 0)
   240  func (f *Function) createSyntacticParams(recv *ast.FieldList, functype *ast.FuncType) {
   241  	// Receiver (at most one inner iteration).
   242  	if recv != nil {
   243  		for _, field := range recv.List {
   244  			for _, n := range field.Names {
   245  				f.addSpilledParam(identVar(f, n))
   246  			}
   247  			// Anonymous receiver?  No need to spill.
   248  			if field.Names == nil {
   249  				f.addParamVar(f.Signature.Recv())
   250  			}
   251  		}
   252  	}
   253  
   254  	// Parameters.
   255  	if functype.Params != nil {
   256  		n := len(f.Params) // 1 if has recv, 0 otherwise
   257  		for _, field := range functype.Params.List {
   258  			for _, n := range field.Names {
   259  				f.addSpilledParam(identVar(f, n))
   260  			}
   261  			// Anonymous parameter?  No need to spill.
   262  			if field.Names == nil {
   263  				f.addParamVar(f.Signature.Params().At(len(f.Params) - n))
   264  			}
   265  		}
   266  	}
   267  
   268  	// Results.
   269  	if functype.Results != nil {
   270  		for _, field := range functype.Results.List {
   271  			// Implicit "var" decl of locals for named results.
   272  			for _, n := range field.Names {
   273  				v := identVar(f, n)
   274  				f.addResultVar(v)
   275  			}
   276  			// Implicit "var" decl of local for an unnamed result.
   277  			if field.Names == nil {
   278  				v := f.Signature.Results().At(len(f.results))
   279  				f.addResultVar(v)
   280  			}
   281  		}
   282  	}
   283  }
   284  
   285  // createDeferStack initializes fn.deferstack to local variable
   286  // initialized to a ssa:deferstack() call.
   287  func (fn *Function) createDeferStack() {
   288  	// Each syntactic function makes a call to ssa:deferstack,
   289  	// which is spilled to a local. Unused ones are later removed.
   290  	fn.deferstack = newVar("defer$stack", tDeferStack)
   291  	call := &Call{Call: CallCommon{Value: vDeferStack}}
   292  	call.setType(tDeferStack)
   293  	deferstack := fn.emit(call)
   294  	spill := emitLocalVar(fn, fn.deferstack)
   295  	emitStore(fn, spill, deferstack, token.NoPos)
   296  }
   297  
   298  type setNumable interface {
   299  	setNum(int)
   300  }
   301  
   302  // numberRegisters assigns numbers to all SSA registers
   303  // (value-defining Instructions) in f, to aid debugging.
   304  // (Non-Instruction Values are named at construction.)
   305  func numberRegisters(f *Function) {
   306  	v := 0
   307  	for _, b := range f.Blocks {
   308  		for _, instr := range b.Instrs {
   309  			switch instr.(type) {
   310  			case Value:
   311  				instr.(setNumable).setNum(v)
   312  				v++
   313  			}
   314  		}
   315  	}
   316  }
   317  
   318  // buildReferrers populates the def/use information in all non-nil
   319  // Value.Referrers slice.
   320  // Precondition: all such slices are initially empty.
   321  func buildReferrers(f *Function) {
   322  	var rands []*Value
   323  	for _, b := range f.Blocks {
   324  		for _, instr := range b.Instrs {
   325  			rands = instr.Operands(rands[:0]) // recycle storage
   326  			for _, rand := range rands {
   327  				if r := *rand; r != nil {
   328  					if ref := r.Referrers(); ref != nil {
   329  						*ref = append(*ref, instr)
   330  					}
   331  				}
   332  			}
   333  		}
   334  	}
   335  }
   336  
   337  // finishBody() finalizes the contents of the function after SSA code generation of its body.
   338  //
   339  // The function is not done being built until done() is called.
   340  func (f *Function) finishBody() {
   341  	f.currentBlock = nil
   342  	f.lblocks = nil
   343  	f.returnVars = nil
   344  	f.jump = nil
   345  	f.source = nil
   346  	f.exits = nil
   347  
   348  	// Remove from f.Locals any Allocs that escape to the heap.
   349  	j := 0
   350  	for _, l := range f.Locals {
   351  		if !l.Heap {
   352  			f.Locals[j] = l
   353  			j++
   354  		}
   355  	}
   356  	// Nil out f.Locals[j:] to aid GC.
   357  	for i := j; i < len(f.Locals); i++ {
   358  		f.Locals[i] = nil
   359  	}
   360  	f.Locals = f.Locals[:j]
   361  
   362  	optimizeBlocks(f)
   363  
   364  	buildReferrers(f)
   365  
   366  	buildDomTree(f)
   367  
   368  	if f.Prog.mode&NaiveForm == 0 {
   369  		// For debugging pre-state of lifting pass:
   370  		// numberRegisters(f)
   371  		// f.WriteTo(os.Stderr)
   372  		lift(f)
   373  	}
   374  
   375  	// clear remaining builder state
   376  	f.results = nil    // (used by lifting)
   377  	f.deferstack = nil // (used by lifting)
   378  	f.vars = nil       // (used by lifting)
   379  	f.subst = nil
   380  
   381  	numberRegisters(f) // uses f.namedRegisters
   382  }
   383  
   384  // done marks the building of f's SSA body complete,
   385  // along with any nested functions, and optionally prints them.
   386  func (f *Function) done() {
   387  	assert(f.parent == nil, "done called on an anonymous function")
   388  
   389  	var visit func(*Function)
   390  	visit = func(f *Function) {
   391  		for _, anon := range f.AnonFuncs {
   392  			visit(anon) // anon is done building before f.
   393  		}
   394  
   395  		f.uniq = 0    // done with uniq
   396  		f.build = nil // function is built
   397  
   398  		if f.Prog.mode&PrintFunctions != 0 {
   399  			printMu.Lock()
   400  			f.WriteTo(os.Stdout)
   401  			printMu.Unlock()
   402  		}
   403  
   404  		if f.Prog.mode&SanityCheckFunctions != 0 {
   405  			mustSanityCheck(f, nil)
   406  		}
   407  	}
   408  	visit(f)
   409  }
   410  
   411  // removeNilBlocks eliminates nils from f.Blocks and updates each
   412  // BasicBlock.Index.  Use this after any pass that may delete blocks.
   413  func (f *Function) removeNilBlocks() {
   414  	j := 0
   415  	for _, b := range f.Blocks {
   416  		if b != nil {
   417  			b.Index = j
   418  			f.Blocks[j] = b
   419  			j++
   420  		}
   421  	}
   422  	// Nil out f.Blocks[j:] to aid GC.
   423  	for i := j; i < len(f.Blocks); i++ {
   424  		f.Blocks[i] = nil
   425  	}
   426  	f.Blocks = f.Blocks[:j]
   427  }
   428  
   429  // SetDebugMode sets the debug mode for package pkg.  If true, all its
   430  // functions will include full debug info.  This greatly increases the
   431  // size of the instruction stream, and causes Functions to depend upon
   432  // the ASTs, potentially keeping them live in memory for longer.
   433  func (pkg *Package) SetDebugMode(debug bool) {
   434  	pkg.debug = debug
   435  }
   436  
   437  // debugInfo reports whether debug info is wanted for this function.
   438  func (f *Function) debugInfo() bool {
   439  	// debug info for instantiations follows the debug info of their origin.
   440  	p := f.declaredPackage()
   441  	return p != nil && p.debug
   442  }
   443  
   444  // lookup returns the address of the named variable identified by obj
   445  // that is local to function f or one of its enclosing functions.
   446  // If escaping, the reference comes from a potentially escaping pointer
   447  // expression and the referent must be heap-allocated.
   448  // We assume the referent is a *Alloc or *Phi.
   449  // (The only Phis at this stage are those created directly by go1.22 "for" loops.)
   450  func (f *Function) lookup(obj *types.Var, escaping bool) Value {
   451  	if v, ok := f.vars[obj]; ok {
   452  		if escaping {
   453  			switch v := v.(type) {
   454  			case *Alloc:
   455  				v.Heap = true
   456  			case *Phi:
   457  				for _, edge := range v.Edges {
   458  					if alloc, ok := edge.(*Alloc); ok {
   459  						alloc.Heap = true
   460  					}
   461  				}
   462  			}
   463  		}
   464  		return v // function-local var (address)
   465  	}
   466  
   467  	// Definition must be in an enclosing function;
   468  	// plumb it through intervening closures.
   469  	if f.parent == nil {
   470  		panic("no ssa.Value for " + obj.String())
   471  	}
   472  	outer := f.parent.lookup(obj, true) // escaping
   473  	v := &FreeVar{
   474  		name:   obj.Name(),
   475  		typ:    outer.Type(),
   476  		pos:    outer.Pos(),
   477  		outer:  outer,
   478  		parent: f,
   479  	}
   480  	f.vars[obj] = v
   481  	f.FreeVars = append(f.FreeVars, v)
   482  	return v
   483  }
   484  
   485  // emit emits the specified instruction to function f.
   486  func (f *Function) emit(instr Instruction) Value {
   487  	return f.currentBlock.emit(instr)
   488  }
   489  
   490  // RelString returns the full name of this function, qualified by
   491  // package name, receiver type, etc.
   492  //
   493  // The specific formatting rules are not guaranteed and may change.
   494  //
   495  // Examples:
   496  //
   497  //	"math.IsNaN"                  // a package-level function
   498  //	"(*bytes.Buffer).Bytes"       // a declared method or a wrapper
   499  //	"(*bytes.Buffer).Bytes$thunk" // thunk (func wrapping method; receiver is param 0)
   500  //	"(*bytes.Buffer).Bytes$bound" // bound (func wrapping method; receiver supplied by closure)
   501  //	"main.main$1"                 // an anonymous function in main
   502  //	"main.init#1"                 // a declared init function
   503  //	"main.init"                   // the synthesized package initializer
   504  //
   505  // When these functions are referred to from within the same package
   506  // (i.e. from == f.Pkg.Object), they are rendered without the package path.
   507  // For example: "IsNaN", "(*Buffer).Bytes", etc.
   508  //
   509  // All non-synthetic functions have distinct package-qualified names.
   510  // (But two methods may have the same name "(T).f" if one is a synthetic
   511  // wrapper promoting a non-exported method "f" from another package; in
   512  // that case, the strings are equal but the identifiers "f" are distinct.)
   513  func (f *Function) RelString(from *types.Package) string {
   514  	// Anonymous?
   515  	if f.parent != nil {
   516  		// An anonymous function's Name() looks like "parentName$1",
   517  		// but its String() should include the type/package/etc.
   518  		parent := f.parent.RelString(from)
   519  		for i, anon := range f.parent.AnonFuncs {
   520  			if anon == f {
   521  				return fmt.Sprintf("%s$%d", parent, 1+i)
   522  			}
   523  		}
   524  
   525  		return f.name // should never happen
   526  	}
   527  
   528  	// Method (declared or wrapper)?
   529  	if recv := f.Signature.Recv(); recv != nil {
   530  		return f.relMethod(from, recv.Type())
   531  	}
   532  
   533  	// Thunk?
   534  	if f.method != nil {
   535  		return f.relMethod(from, f.method.recv)
   536  	}
   537  
   538  	// Bound?
   539  	if len(f.FreeVars) == 1 && strings.HasSuffix(f.name, "$bound") {
   540  		return f.relMethod(from, f.FreeVars[0].Type())
   541  	}
   542  
   543  	// Package-level function?
   544  	// Prefix with package name for cross-package references only.
   545  	if p := f.relPkg(); p != nil && p != from {
   546  		return fmt.Sprintf("%s.%s", p.Path(), f.name)
   547  	}
   548  
   549  	// Unknown.
   550  	return f.name
   551  }
   552  
   553  func (f *Function) relMethod(from *types.Package, recv types.Type) string {
   554  	return fmt.Sprintf("(%s).%s", relType(recv, from), f.name)
   555  }
   556  
   557  // writeSignature writes to buf the signature sig in declaration syntax.
   558  func writeSignature(buf *bytes.Buffer, from *types.Package, name string, sig *types.Signature) {
   559  	buf.WriteString("func ")
   560  	if recv := sig.Recv(); recv != nil {
   561  		buf.WriteString("(")
   562  		if name := recv.Name(); name != "" {
   563  			buf.WriteString(name)
   564  			buf.WriteString(" ")
   565  		}
   566  		types.WriteType(buf, recv.Type(), types.RelativeTo(from))
   567  		buf.WriteString(") ")
   568  	}
   569  	buf.WriteString(name)
   570  	types.WriteSignature(buf, sig, types.RelativeTo(from))
   571  }
   572  
   573  // declaredPackage returns the package fn is declared in or nil if the
   574  // function is not declared in a package.
   575  func (fn *Function) declaredPackage() *Package {
   576  	switch {
   577  	case fn.Pkg != nil:
   578  		return fn.Pkg // non-generic function  (does that follow??)
   579  	case fn.topLevelOrigin != nil:
   580  		return fn.topLevelOrigin.Pkg // instance of a named generic function
   581  	case fn.parent != nil:
   582  		return fn.parent.declaredPackage() // instance of an anonymous [generic] function
   583  	default:
   584  		return nil // function is not declared in a package, e.g. a wrapper.
   585  	}
   586  }
   587  
   588  // relPkg returns types.Package fn is printed in relationship to.
   589  func (fn *Function) relPkg() *types.Package {
   590  	if p := fn.declaredPackage(); p != nil {
   591  		return p.Pkg
   592  	}
   593  	return nil
   594  }
   595  
   596  var _ io.WriterTo = (*Function)(nil) // *Function implements io.Writer
   597  
   598  func (f *Function) WriteTo(w io.Writer) (int64, error) {
   599  	var buf bytes.Buffer
   600  	WriteFunction(&buf, f)
   601  	n, err := w.Write(buf.Bytes())
   602  	return int64(n), err
   603  }
   604  
   605  // WriteFunction writes to buf a human-readable "disassembly" of f.
   606  func WriteFunction(buf *bytes.Buffer, f *Function) {
   607  	fmt.Fprintf(buf, "# Name: %s\n", f.String())
   608  	if f.Pkg != nil {
   609  		fmt.Fprintf(buf, "# Package: %s\n", f.Pkg.Pkg.Path())
   610  	}
   611  	if syn := f.Synthetic; syn != "" {
   612  		fmt.Fprintln(buf, "# Synthetic:", syn)
   613  	}
   614  	if pos := f.Pos(); pos.IsValid() {
   615  		fmt.Fprintf(buf, "# Location: %s\n", f.Prog.Fset.Position(pos))
   616  	}
   617  
   618  	if f.parent != nil {
   619  		fmt.Fprintf(buf, "# Parent: %s\n", f.parent.Name())
   620  	}
   621  
   622  	if f.Recover != nil {
   623  		fmt.Fprintf(buf, "# Recover: %s\n", f.Recover)
   624  	}
   625  
   626  	from := f.relPkg()
   627  
   628  	if f.FreeVars != nil {
   629  		buf.WriteString("# Free variables:\n")
   630  		for i, fv := range f.FreeVars {
   631  			fmt.Fprintf(buf, "# % 3d:\t%s %s\n", i, fv.Name(), relType(fv.Type(), from))
   632  		}
   633  	}
   634  
   635  	if len(f.Locals) > 0 {
   636  		buf.WriteString("# Locals:\n")
   637  		for i, l := range f.Locals {
   638  			fmt.Fprintf(buf, "# % 3d:\t%s %s\n", i, l.Name(), relType(typeparams.MustDeref(l.Type()), from))
   639  		}
   640  	}
   641  	writeSignature(buf, from, f.Name(), f.Signature)
   642  	buf.WriteString(":\n")
   643  
   644  	if f.Blocks == nil {
   645  		buf.WriteString("\t(external)\n")
   646  	}
   647  
   648  	// NB. column calculations are confused by non-ASCII
   649  	// characters and assume 8-space tabs.
   650  	const punchcard = 80 // for old time's sake.
   651  	const tabwidth = 8
   652  	for _, b := range f.Blocks {
   653  		if b == nil {
   654  			// Corrupt CFG.
   655  			fmt.Fprintf(buf, ".nil:\n")
   656  			continue
   657  		}
   658  		n, _ := fmt.Fprintf(buf, "%d:", b.Index)
   659  		bmsg := fmt.Sprintf("%s P:%d S:%d", b.Comment, len(b.Preds), len(b.Succs))
   660  		fmt.Fprintf(buf, "%*s%s\n", punchcard-1-n-len(bmsg), "", bmsg)
   661  
   662  		if false { // CFG debugging
   663  			fmt.Fprintf(buf, "\t# CFG: %s --> %s --> %s\n", b.Preds, b, b.Succs)
   664  		}
   665  		for _, instr := range b.Instrs {
   666  			buf.WriteString("\t")
   667  			switch v := instr.(type) {
   668  			case Value:
   669  				l := punchcard - tabwidth
   670  				// Left-align the instruction.
   671  				if name := v.Name(); name != "" {
   672  					n, _ := fmt.Fprintf(buf, "%s = ", name)
   673  					l -= n
   674  				}
   675  				n, _ := buf.WriteString(instr.String())
   676  				l -= n
   677  				// Right-align the type if there's space.
   678  				if t := v.Type(); t != nil {
   679  					buf.WriteByte(' ')
   680  					ts := relType(t, from)
   681  					l -= len(ts) + len("  ") // (spaces before and after type)
   682  					if l > 0 {
   683  						fmt.Fprintf(buf, "%*s", l, "")
   684  					}
   685  					buf.WriteString(ts)
   686  				}
   687  			case nil:
   688  				// Be robust against bad transforms.
   689  				buf.WriteString("<deleted>")
   690  			default:
   691  				buf.WriteString(instr.String())
   692  			}
   693  			// -mode=S: show line numbers
   694  			if f.Prog.mode&LogSource != 0 {
   695  				if pos := instr.Pos(); pos.IsValid() {
   696  					fmt.Fprintf(buf, " L%d", f.Prog.Fset.Position(pos).Line)
   697  				}
   698  			}
   699  			buf.WriteString("\n")
   700  		}
   701  	}
   702  	fmt.Fprintf(buf, "\n")
   703  }
   704  
   705  // newBasicBlock adds to f a new basic block and returns it.  It does
   706  // not automatically become the current block for subsequent calls to emit.
   707  // comment is an optional string for more readable debugging output.
   708  func (f *Function) newBasicBlock(comment string) *BasicBlock {
   709  	b := &BasicBlock{
   710  		Index:   len(f.Blocks),
   711  		Comment: comment,
   712  		parent:  f,
   713  	}
   714  	b.Succs = b.succs2[:0]
   715  	f.Blocks = append(f.Blocks, b)
   716  	return b
   717  }
   718  
   719  // NewFunction returns a new synthetic Function instance belonging to
   720  // prog, with its name and signature fields set as specified.
   721  //
   722  // The caller is responsible for initializing the remaining fields of
   723  // the function object, e.g. Pkg, Params, Blocks.
   724  //
   725  // It is practically impossible for clients to construct well-formed
   726  // SSA functions/packages/programs directly, so we assume this is the
   727  // job of the Builder alone.  NewFunction exists to provide clients a
   728  // little flexibility.  For example, analysis tools may wish to
   729  // construct fake Functions for the root of the callgraph, a fake
   730  // "reflect" package, etc.
   731  //
   732  // TODO(adonovan): think harder about the API here.
   733  func (prog *Program) NewFunction(name string, sig *types.Signature, provenance string) *Function {
   734  	return &Function{Prog: prog, name: name, Signature: sig, Synthetic: provenance}
   735  }
   736  
   737  // Syntax returns the function's syntax (*ast.Func{Decl,Lit})
   738  // if it was produced from syntax or an *ast.RangeStmt if
   739  // it is a range-over-func yield function.
   740  func (f *Function) Syntax() ast.Node { return f.syntax }
   741  
   742  // identVar returns the variable defined by id.
   743  func identVar(fn *Function, id *ast.Ident) *types.Var {
   744  	return fn.info.Defs[id].(*types.Var)
   745  }
   746  
   747  // unique returns a unique positive int within the source tree of f.
   748  // The source tree of f includes all of f's ancestors by parent and all
   749  // of the AnonFuncs contained within these.
   750  func unique(f *Function) int64 {
   751  	f.uniq++
   752  	return f.uniq
   753  }
   754  
   755  // exit is a change of control flow going from a range-over-func
   756  // yield function to an ancestor function caused by a break, continue,
   757  // goto, or return statement.
   758  //
   759  // There are 3 types of exits:
   760  // * return from the source function (from ReturnStmt),
   761  // * jump to a block (from break and continue statements [labelled/unlabelled]),
   762  // * go to a label (from goto statements).
   763  //
   764  // As the builder does one pass over the ast, it is unclear whether
   765  // a forward goto statement will leave a range-over-func body.
   766  // The function being exited to is unresolved until the end
   767  // of building the range-over-func body.
   768  type exit struct {
   769  	id   int64     // unique value for exit within from and to
   770  	from *Function // the function the exit starts from
   771  	to   *Function // the function being exited to (nil if unresolved)
   772  	pos  token.Pos
   773  
   774  	block *BasicBlock  // basic block within to being jumped to.
   775  	label *types.Label // forward label being jumped to via goto.
   776  	// block == nil && label == nil => return
   777  }
   778  
   779  // storeVar emits to function f code to store a value v to a *types.Var x.
   780  func storeVar(f *Function, x *types.Var, v Value, pos token.Pos) {
   781  	emitStore(f, f.lookup(x, true), v, pos)
   782  }
   783  
   784  // labelExit creates a new exit to a yield fn to exit the function using a label.
   785  func labelExit(fn *Function, label *types.Label, pos token.Pos) *exit {
   786  	e := &exit{
   787  		id:    unique(fn),
   788  		from:  fn,
   789  		to:    nil,
   790  		pos:   pos,
   791  		label: label,
   792  	}
   793  	fn.exits = append(fn.exits, e)
   794  	return e
   795  }
   796  
   797  // blockExit creates a new exit to a yield fn that jumps to a basic block.
   798  func blockExit(fn *Function, block *BasicBlock, pos token.Pos) *exit {
   799  	e := &exit{
   800  		id:    unique(fn),
   801  		from:  fn,
   802  		to:    block.parent,
   803  		pos:   pos,
   804  		block: block,
   805  	}
   806  	fn.exits = append(fn.exits, e)
   807  	return e
   808  }
   809  
   810  // blockExit creates a new exit to a yield fn that returns the source function.
   811  func returnExit(fn *Function, pos token.Pos) *exit {
   812  	e := &exit{
   813  		id:   unique(fn),
   814  		from: fn,
   815  		to:   fn.source,
   816  		pos:  pos,
   817  	}
   818  	fn.exits = append(fn.exits, e)
   819  	return e
   820  }