gonum.org/v1/gonum@v0.14.0/graph/community/louvain.tex (about)

     1  % Copyright ©2015 The Gonum Authors. All rights reserved.
     2  % Use of this source code is governed by a BSD-style
     3  % license that can be found in the LICENSE file.
     4  
     5  \documentclass{article}
     6  
     7  \usepackage{amsmath,amsfonts}
     8  \usepackage[margin=4cm]{geometry}
     9  
    10  \title{Louvain algorithm for undirected and directed graphs}
    11  \author{The {\tt Gonum} Authors}
    12  
    13  \begin{document}
    14  
    15  \maketitle
    16  
    17  The algorithm attempts to find communities (highly connected sub-graphs),
    18  and it does this by minimising the modularity function
    19  \begin{equation}
    20  	Q(c) = \frac{1}{2m}\sum_i\sum_j\left[ A_{ij} - \gamma \frac{k_ik_j}{2m} \right] \delta_{ij}(c),
    21  \end{equation}
    22  where $c$ is a partition of nodes into subsets or communities,
    23  $A_{ij}$ is the edge weight between nodes $i$ and $j$, 
    24  $\gamma$ is a tuning parameter,
    25  \begin{equation}
    26  m = \frac{1}{2}\sum_i\sum_jA_{ij},
    27  \end{equation}
    28  \begin{equation}
    29  k_i = \sum_j{A_{ij}},
    30  \end{equation}
    31  and 
    32  \begin{equation}
    33  	\delta_{ij}(c) = \left \{ \begin{array}{ll}
    34  	1 & \text{if} \quad  c(i) = c(j) \\
    35  	0 & \text{otherwise} \end{array} \right ..
    36  \end{equation}
    37  Here $c(i)$ denotes the community to which node $i$ belongs 
    38  in the partitioning $c$.
    39  
    40  The algorithm finds a hierarchical community structure by iterating 
    41  between two phases:
    42  \begin{enumerate}
    43  	\item Find a set of communities that minimise $Q$.
    44  	\item Construct a new graph, whose nodes are the communities 
    45  	found in the preceding phase one step.
    46  \end{enumerate}
    47  Each iteration of these two phases is called a `pass'.
    48  In this way, the algorithm obtains a nested community structure, 
    49  where at each level $Q$ is minimised for the relevant graph.
    50  We consider this process in more detail, in particular looking 
    51  at phase one first in the first pass, when each node is a single
    52  node, and then how this generalises to later passes when each node 
    53  is a community.
    54  
    55  \section{Undirected Graphs}
    56  
    57  \subsection{Initial Pass}
    58  \label{sec:initialPass}
    59  
    60  The initial pass is simple as the initial pass uses the original graph, 
    61  and in all following passes graphs constructed in the previous pass's 
    62  phase two are used.
    63  Here we will consider this initial simple formulation for phase one, and
    64  in Section~\ref{sec:laterPasses} we consider how this generalises for 
    65  passes two and onwards. 
    66  Phase one works by initially allocating each node to a separate community,
    67  and then iterating through each node $a$ and checking if moving it into 
    68  a different community $\beta$ will reduce $Q$.
    69  If there are possible moves that will reduce $Q$, $a$ is moved into the 
    70  the community which will generate the largest reduction in $Q$. 
    71  This process is continued until there are no moves left to reduce $Q$ 
    72  further, meaning a local minimum for $Q$ has been achieved. 
    73  Then the algorithm moves to phase two (constructing a new graph where
    74  each node in the new graph is a community in the old graph). 
    75  
    76  Note that we assume the original graph to be simple and undirected.
    77  First, we introduce some notation that will be useful:
    78  Let $c(i)$ denote the community to which node $i$ belongs, 
    79  and let $\alpha$ be the community that the node $a$ mentioned above
    80  belongs to, i.e., $\alpha = c_a$.
    81  Then we define
    82  \newcommand{\Stot}[1]{\Sigma_{\text{tot}}^{#1}}
    83  \begin{equation}
    84  	\Stot{\alpha} = \sum_{i \in \alpha}\sum_{j}A_{ij} = \sum_{i \in \alpha}k_i,
    85  \end{equation}
    86  \newcommand{\kin}[2]{k_{#1}^{#2}}
    87  \begin{equation}
    88  	\kin{i}{\alpha} = \sum_{j \in \alpha}A_{ij},
    89  \end{equation}
    90  and
    91  \newcommand{\Sin}[1]{\Sigma_{\text{in}}^{#1}}
    92  \begin{equation}
    93  	\Sin{\alpha} = \sum_{i \in \alpha}\sum_{j \in \alpha}A_{ij} = \sum_{i \in \alpha}\kin{i}{\alpha}.
    94  \end{equation}
    95  
    96  We are interested in how $Q$ will change if we move a node $a$ from its 
    97  current community $\alpha$, to a new community $\beta$.
    98  This will have two effects, it will remove the terms from $Q$ 
    99  related to $a$ in $\alpha$, which we will call $Q^-$ and it will add terms 
   100  related to $a$ in $\beta$, which we will call $Q^+$. 
   101  The total change in $Q$ caused by the movement of $a$ from $\alpha$ to $\beta$ is 
   102  \begin{equation}
   103  	\Delta Q = Q^{+} - Q^{-},
   104  \end{equation}
   105  where
   106  \begin{align*}
   107  Q^- &= \frac{1}{2m}\left[ \left( A_{aa} - \gamma \frac{k_a^2}{2m} \right) 
   108  + 2\sum_{i \in \alpha, \, i \neq a} \left( A_{ia} - \gamma \frac{k_ik_a}{2m} \right) \right] \\
   109  	&= \frac{1}{2m}\left[ \left( A_{aa} - \gamma \frac{k_a^2}{2m} \right) 
   110  + 2 \left( \kin{a}{\alpha} -A_{aa}\right) - \gamma \frac{2k_a}{2m}\sum_{i \in \alpha, \, i \neq a} k_i \right] \\
   111  	&= \frac{1}{2m}\left[ \left( A_{aa} - \gamma \frac{k_a^2}{2m} \right) 
   112  + 2 \left( \kin{a}{\alpha} -A_{aa}\right) - \gamma \frac{2k_a}{2m}\left( \Stot{\alpha} - k_a \right)  \right], \\
   113  \end{align*}
   114  and
   115  \begin{align*}
   116  Q^+ &= \frac{1}{2m}\left[ \left( A_{aa} - \gamma \frac{k_a^2}{2m} \right) 
   117  + 2\sum_{i \in \beta} \left( A_{ia} - \gamma \frac{k_ik_a}{2m} \right) \right] \\
   118  		&= \frac{1}{2m}\left[ \left( A_{aa} - \gamma \frac{k_a^2}{2m} \right) 
   119  + 2\kin{a}{\beta} - \gamma \frac{2k_a}{2m}\sum_{i \in \beta} k_i \right] \\
   120  		&= \frac{1}{2m}\left[ \left( A_{aa} - \gamma \frac{k_a^2}{2m} \right) 
   121  + 2\kin{a}{\beta} - \gamma \frac{2k_a\Stot{\beta}}{2m} \right]. \\
   122  \end{align*}
   123  The first term in both these expressions ($Q^-$ and $Q^+$) is the same, and so cancels:
   124  \begin{equation}
   125  \Delta Q = \frac{1}{2m}\left[ \left( 2\kin{a}{\beta} - \gamma \frac{2k_a\Stot{\beta}}{2m} \right) 
   126  		- \left( 2 \left( \kin{a}{\alpha} -A_{aa}\right) - \gamma \frac{2k_a}{2m}\left( \Stot{\alpha} - k_a \right) \right) \right]. 
   127  \end{equation}
   128   
   129  \subsection{Later Passes}
   130  \label{sec:laterPasses}
   131  
   132  In phase two a `meta-graph' is constructed where nodes correspond to 
   133  the communities found in the preceding phase one step, and edge weight
   134  between two such communities (nodes, in the meta-graph)
   135  $\alpha$ and $\beta$ are defined to be
   136  \begin{equation}
   137  	A_{\alpha \beta}^* = \sum_{i \in \alpha}\sum_{j \in \beta}A_{ij}.
   138  	\label{eqn:Aij*}
   139  \end{equation} 
   140  Note that $i$ and $j$ refer to nodes in the original graph, not nodes 
   141  in the previous graph, and so holds any meta-graph, not just the first.
   142  Also note that this definition of $A^*_{\alpha \beta}$ allows for 
   143  $A^*_{\alpha \alpha}$ to be non-zero as
   144  \begin{equation}
   145  A_{\alpha \alpha}^* = \sum_{i \in \alpha}\sum_{j \in \alpha}A_{ij} = \Sin{\alpha}.
   146  \end{equation} 
   147  
   148  In this newly constructed graph, $\alpha$ and $\beta$ are nodes, but 
   149  also refer to communities (sets of nodes) in the original graph, and I 
   150  use these two interpretations interchangeably.
   151  This should be the only ambiguous bit of notation in this document, I hope.
   152  
   153  The results of Section~\ref{sec:initialPass} generalise to these meta-graphs,
   154  and the generalised results mirror those of Section~\ref{sec:initialPass} closely
   155  -- I distinguish the new results from those of Section~\ref{sec:initialPass} by a 
   156  superscript $*$.
   157  I use $i$ and $j$ to denote nodes of the original graph as in Section~\ref{sec:initialPass}, 
   158  and use $z$ and $w$ to denote nodes of the meta-graph (communities of the original).
   159  I use analogous notation to Section~\ref{sec:initialPass}, $c^*(z)$, to 
   160  denote the community to which node $z$ of the meta-graph belongs, 
   161  and let $\mathfrak{a}$ be the community that the node $\alpha$ belongs to 
   162  ($c^*(\alpha) = \mathfrak{a}$), i.e.
   163  \begin{equation}
   164  	\mathfrak{a} = \{z | c^*(z) = c^*(\alpha) \}.
   165  \end{equation}
   166  
   167  Given this notation, we can observe that
   168  \begin{equation}
   169  m^* = \frac{1}{2}\sum_{z}\sum_{w}{A_{zw}^*} = \frac{1}{2}\sum_{z}\sum_{w}{\sum_{i \in z}\sum_{j \in w}A_{ij}} = \frac{1}{2}\sum_i\sum_jA_{ij} = m,
   170  \end{equation}
   171  \begin{equation}
   172  k_{z}^* = \sum_{w}{A_{zw}^*} =  \sum_{w}{\sum_{i \in z}\sum_{j \in w}A_{ij}} = \sum_{i \in z}\sum_{j}A_{ij} = \Stot{z},
   173  \end{equation}
   174  \begin{equation}
   175  	\Stot{\mathfrak{a} *} = \sum_{z \in \mathfrak{a}}\sum_{w}A_{zw}^* = \sum_{z \in \mathfrak{a}}k_z^* = \sum_{z \in \mathfrak{a}}\Stot{z},
   176  \end{equation}
   177  \begin{equation}
   178  	\kin{z}{\mathfrak{a} *} = \sum_{w \in \mathfrak{a}}{A_{zw}^*} = \sum_{w \in \mathfrak{a}}{\sum_{i \in z}\sum_{j \in w}A_{ij}},
   179  \end{equation}
   180  and
   181  \begin{equation}
   182  \Sin{\mathfrak{a} *} = \sum_{z \in \mathfrak{a}}\sum_{w \in \mathfrak{a}}A_{zw}^* = \sum_{z \in \mathfrak{a}}\kin{z}{\mathfrak{a} *} = \sum_{z \in \mathfrak{a}}\sum_{w \in \mathfrak{a}}{\sum_{i \in z}\sum_{j \in w}A_{ij}}.
   183  	%\label{eqn:Sin}
   184  \end{equation}
   185  
   186  If we let $\mathfrak{b}$ denote the community to which we are considering moving $\alpha$,
   187  then the expression for $\Delta Q$ from Section~\ref{sec:initialPass} trivially generalises to
   188  \begin{equation}
   189  \Delta Q = \frac{1}{2m}\left[ \left( 2 \kin{\alpha}{\mathfrak{b} *} - \gamma \frac{2k_{\alpha}^*\Stot{\mathfrak{b} *}}{2m} \right) 
   190  		- \left( 2\left( \kin{\alpha}{\mathfrak{a} *} - A_{\alpha \alpha}^* \right) - \gamma \frac{2k_{\alpha}^*}{2m} \left( \Stot{\mathfrak{a} *} - k_{\alpha}^* \right ) \right) \right] \\
   191  \end{equation}
   192  
   193  \section{Directed Graphs}
   194  \label{sec:directedGraphs}
   195  
   196  It is of interest to consider how this generalises to directed graphs.
   197  If we are to treat incoming and outgoing nodes equally, there are several
   198  thoughts on how to extend the algorithm to directed graphs, of which we 
   199  will explore three: 
   200  \begin{itemize}
   201  	\item Construct an undirected graph first, and then use the undirected case.
   202  	\item Generalise the expressions from the undirected case to the directed case, 
   203  	we will consider two different suggestions for such generalisations. 
   204  \end{itemize}
   205  We will show that one of the two `generalisation of expressions' approaches is 
   206  equivalent to constructing an undirected graph, and the other is not.
   207  
   208  \subsection{Construction of an undirected graph}
   209  A simple approach to generalising to directed graphs is to construct 
   210  an undirected graph with edge weights
   211  \begin{equation}
   212  A_{ij} = B_{ij} + B_{ji},
   213  \label{eqn:undirectedAB}
   214  \end{equation}
   215  and simply use the undirected algorithm.
   216  Another suggestion is to average the directed edges to make
   217  an undirected graph, i.e. to use a directed graph with edge weights
   218  \begin{equation}
   219  A_{ij} = \frac{B_{ij} + B_{ji}}{2}.
   220  \end{equation}
   221  This raises an important question: does scaling all edge weights across 
   222  the entire graph by a constant affect the results of the algorithm?
   223  Hopefully not, but worth checking.
   224  We can follow this through the results for the undirected graph by 
   225  substituting $A_{ij}^{(1)} = pA_{ij}$, $p \in \mathbb{R}$, and 
   226  distinguishing the new expressions by a superscript ${(1)}$. These
   227  new expressions are:
   228  \begin{equation}
   229  m^{(1)} = \frac{1}{2}\sum_i\sum_jpA_{ij}  = p\frac{1}{2}\sum_i\sum_j A_{ij} = pm ,
   230  \end{equation}
   231  \begin{equation}
   232  k_i^{(1)} = \sum_j{pA_{ij}} = p\sum_j{A_{ij}} = pk_i,
   233  \end{equation}
   234  and so
   235  \begin{align*}
   236  	Q^{(1)}(c) &= \frac{1}{2pm}\sum_i\sum_j\left[ pA_{ij} - \gamma \frac{pk_ipk_j}{2pm} \right] \delta_{ij}(c) \\
   237  	&= \frac{1}{2m}\sum_i\sum_j\left[ A_{ij} - \gamma \frac{k_ik_j}{2m} \right] \delta_{ij}(c) \\
   238  	&= Q(c)
   239  \end{align*}
   240  Note that as we have shown $Q^{(1)} = Q$ there is no need to go into the remainder of the terms 
   241  involved in the algorithm, as they all derive from $Q$.
   242  
   243  \subsection{First generalisation of expressions approach}
   244  
   245  One suggested extension to directed graphs is to modify the expressions 
   246  involved by adding the `from' case and the `to' case for each term. 
   247  If we let $B_{ij}$ be the edge weight between nodes $i$ and $j$ in 
   248  the directed graph, and distinguishing these extended expressions by 
   249  a superscript $(2)$, the extended expressions become:
   250  \begin{equation}
   251  m^{(2)} = \frac{1}{2}\left ( \sum_i\sum_jB_{ij} + \sum_i\sum_jB_{ji}\right)  = \frac{1}{2}\sum_i\sum_j \left( B_{ij} + B_{ji} \right) ,
   252  \end{equation}
   253  \begin{equation}
   254  k_i^{(2)} = \sum_jB_{ij} + \sum_jB_{ji} = \sum_j{\left( B_{ij} + B_{ji} \right)},
   255  \end{equation}
   256  and similarly
   257  \begin{equation}
   258  	Q^{(2)}(c) = \frac{1}{2m}\sum_i\sum_j\left[ \left( B_{ij} + B_{ji} \right) - \gamma \frac{k_i^{(2)}k_j^{(2)}}{2m} \right] \delta_{ij}(c).
   259  \end{equation}
   260  
   261  Note how this is equivalent to the construction of an undirected graph as 
   262  per Equation~(\ref{eqn:undirectedAB}). Similarly to above, 
   263  there is no need to go into the remainder of the terms 
   264  involved in the algorithm, as they all derive from $Q$.
   265  
   266  
   267  \subsection{Second generalisation of expressions approach}
   268  
   269  Another approach to generalising the expressions to the 
   270  directed case, that still treats incoming and outgoing edges 
   271  as equally important, is to propose an alternative modularity 
   272  expression:
   273  \newcommand{\dkin}[1]{k_{#1}^{\text{in}}}
   274  \newcommand{\dkout}[1]{k_{#1}^{\text{out}}}
   275  \begin{equation}
   276  Q^{(3)}(c) = \frac{1}{2m}\sum_i\sum_j\left[ 2B_{ij} - 2\gamma \frac{\dkin{i}\dkout{j}}{2m} \right] \delta_{ij}(c), \\
   277  \end{equation}
   278  where 
   279  \begin{equation}
   280  \dkout{i} = \sum_j{B_{ij}} 
   281  \quad \quad \text{and} \quad \quad
   282  \dkin{i} = \sum_j{B_{ji}},
   283  \end{equation}
   284  so $k_i^{(2)} = \dkin{i} + \dkout{i}$.
   285  Note I leave the factor of two in the expression for $Q^{(3)}$ so that it 
   286  remains as comparable to that for $Q^{(2)}$ as possible.
   287  There is no need for alternative $m$, as it will still be the same as above.
   288  $Q^{(3)}$ will differ from $Q^{(2)}$ in two ways.
   289  Firstly, as $k_i^{(2)} = \dkin{i} + \dkout{i}$, 
   290  \begin{align*}
   291  \sum_i\sum_j k_i^{(2)} k_j^{(2)} \delta_{ij}(c)  &= \sum_i\sum_j  (\dkin{i} + \dkout{i}) (\dkin{j} + \dkout{j}) \delta_{ij}(c) \\
   292   &= \sum_i\sum_j \left[ (\dkin{i}\dkin{j} + \dkout{i}\dkout{j}) + (\dkin{i}\dkout{j} + \dkin{j}\dkout{i}) \right] \delta_{ij}(c). \\
   293   &= \sum_i\sum_j \left[ (\dkin{i}\dkin{j} + \dkout{i}\dkout{j}) + 2\dkin{i}\dkout{j} \right] \delta_{ij}(c), \\
   294  \end{align*}
   295  and similarly,
   296  \begin{equation}
   297  \sum_i\sum_j  \left( B_{ij} + B_{ji} \right) \delta_{ij}(c) = 2\sum_i\sum_j B_{ij} \delta_{ij}(c).
   298  \end{equation}
   299  From these two expressions, we can see that 
   300  \begin{equation}
   301  Q^{(3)} - Q^{(2)} = \frac{1}{2m}\sum_i\sum_j \gamma \frac{\dkin{i}\dkin{j} + \dkout{i}\dkout{j}}{2m} \delta_{ij}(c).
   302  \end{equation}
   303  
   304  
   305  \section{Directed Graphs in more detail}
   306  \label{sec:directedGraphsDetail}
   307  
   308  In Section \ref{sec:directedGraphs} we essentially showed three 
   309  things:
   310  \begin{itemize}
   311  	\item How an undirected graph could be constructed from a directed
   312  	graph, thereby allowing the undirected algorithm to be used for 
   313  	directed graphs.
   314  	\item How scaling all edge weights by a non-zero constant would not 
   315  	affect the modularity function.
   316  	\item An alternative approach to extending the algorithm to 
   317  	directed graphs that is not equivalent to first reducing it 
   318  	to an undirected graph.
   319  \end{itemize}
   320  It is this third point that we will explore here.
   321  Analogously to Sections \ref{sec:initialPass} and \ref{sec:laterPasses} we will 
   322  break this up into the initial pass and the later passes.
   323  
   324  \subsection{Initial pass}
   325  \label{sec:initialPassDirected}
   326  
   327  Continuing with the notation of Section \ref{sec:initialPass}, in which 
   328  $c(i)$ denotes the community to which node $i$ belongs, 
   329  and $\alpha = c(a)$, we define
   330  \newcommand{\dinStot}[1]{\Sigma_{\text{tot}}^{\text{in}(#1)}}
   331  \newcommand{\doutStot}[1]{\Sigma_{\text{tot}}^{\text{out}(#1)}}
   332  \begin{equation}
   333  	\doutStot{\alpha} = \sum_{i \in \alpha}\sum_{j}B_{ij} = \sum_{i \in \alpha}\dkout{i}
   334  	\quad \quad \text{and} \quad \quad
   335  	\dinStot{\alpha} = \sum_{i \in \alpha}\sum_{j}B_{ji} = \sum_{i \in \alpha}\dkin{i},
   336  \end{equation}
   337  \newcommand{\dinkin}[2]{k_{#1}^{\text{in}(#2)}}
   338  \newcommand{\doutkin}[2]{k_{#1}^{\text{out}(#2)}}
   339  \begin{equation}
   340  	\doutkin{i}{\alpha} = \sum_{j \in \alpha}B_{ij}
   341  	\quad \quad \text{and} \quad \quad
   342  	\dinkin{i}{\alpha} = \sum_{j \in \alpha}B_{ji},
   343  \end{equation}
   344  and we will entertain one more ambiguous notation choice:
   345  %\newcommand{\Sin}[1]{\Sigma_{\text{in}}^{#1}}
   346  \begin{equation}
   347  	\Sin{\alpha} = \sum_{i \in \alpha}\sum_{j \in \alpha}B_{ij} = \sum_{i \in \alpha}\doutkin{i}{\alpha} = \sum_{i \in \alpha}\dinkin{i}{\alpha}.
   348  \end{equation}
   349  
   350  Analogously to Section \ref{sec:initialPass}, we are interested in how 
   351  $Q^{(3)}$ will change if we move a node $a$ from its 
   352  current community $\alpha$, to a new community $\beta$, 
   353  and analogously this will have two effects -- it will remove the terms 
   354  from $Q^{(3)}$ related to $a$ in $\alpha$, which we will call $Q^{-(3)}$ 
   355  and it will add terms related to $a$ in $\beta$, which we will call $Q^{+(3)}$. 
   356  The total change in $Q^{(3)}$ caused by the movement of $a$ from $\alpha$ to $\beta$ is 
   357  \begin{equation}
   358  	\Delta Q^{(3)} = Q^{+(3)} - Q^{-(3)},
   359  \end{equation}
   360  where
   361  \begin{align*}
   362  Q^{-(3)} &= \frac{1}{2m}\left[ \left( 2B_{aa} - 2\gamma \frac{\dkin{a}\dkout{a}}{2m} \right) 
   363  + \sum_{i \in \alpha, \, i \neq a} \left( 2B_{ia} + 2B_{ai} - 2\gamma \frac{\dkin{i}\dkout{a}}{2m} - 2\gamma \frac{\dkin{a}\dkout{i}}{2m} \right) \right] \\
   364  				 &= \frac{1}{2m}\left[ \left( 2B_{aa} - 2\gamma \frac{\dkin{a}\dkout{a}}{2m} \right) 
   365  + 2(\dinkin{a}{\alpha} - B_{aa}) + 2(\doutkin{a}{\alpha} - B_{aa}) \hdots \right . \\
   366   & \quad \quad \quad \quad \quad \quad \left .
   367  - \frac{2\gamma\dkout{a}}{2m} (\dinStot{\alpha} - \dkin{a}) - \frac{2\gamma\dkin{a}}{2m} (\doutStot{\alpha} - \dkout{a}) \right] \\
   368  \end{align*}
   369  and
   370  \begin{align*}
   371  Q^{+(3)} &= \frac{1}{2m}\left[ \left( 2B_{aa} - 2\gamma \frac{\dkin{a}\dkout{a}}{2m} \right) 
   372  + \sum_{i \in \beta} \left( 2B_{ia} + 2B_{ai} - 2\gamma \frac{\dkin{i}\dkout{a}}{2m} - 2\gamma \frac{\dkin{a}\dkout{i}}{2m} \right) \right] \\
   373  				 &= \frac{1}{2m}\left[ \left( 2B_{aa} - 2\gamma \frac{\dkin{a}\dkout{a}}{2m} \right) 
   374  + 2\dinkin{a}{\beta} + 2\doutkin{a}{\beta} - \frac{2\gamma\dkout{a}}{2m} \dinStot{\beta}  - \frac{2\gamma\dkin{a}}{2m} \doutStot{\beta} \right] \\
   375  \end{align*}
   376  Similarly to Section \ref{sec:initialPass}, the first term in both these expressions is the same, and so cancels, leaving:
   377  \begin{align*}
   378  \Delta Q^{(3)} &= \frac{2}{2m}\left[ 
   379  \left( \dinkin{a}{\beta} + \doutkin{a}{\beta} - \frac{\gamma\dkout{a}}{2m} \dinStot{\beta}  - \frac{\gamma\dkin{a}}{2m} \doutStot{\beta} \right) \right. \\
   380  & \hspace{-1cm}
   381  - \left. \left( (\dinkin{a}{\alpha} - B_{aa}) + (\doutkin{a}{\alpha} - B_{aa}) - \frac{\gamma\dkout{a}}{2m} (\dinStot{\alpha} - \dkin{a}) - \frac{\gamma\dkin{a}}{2m} (\doutStot{\alpha} - \dkout{a})  \right) \right] \\
   382   &= \frac{2}{2m}\left[ (\dinkin{a}{\beta}-\dinkin{a}{\alpha}) + (\doutkin{a}{\beta}-\doutkin{a}{\alpha}) + 2B_{aa} \right. \\
   383  & \hspace{-1cm} \left.
   384  - \frac{\gamma\dkout{a}}{2m} (\dinStot{\beta}-\dinStot{\alpha}) - \frac{\gamma\dkin{a}}{2m} (\doutStot{\beta} - \doutStot{\alpha}) - \frac{2\gamma\dkin{a}\dkout{a}}{2m} \right]
   385  \end{align*}
   386  
   387  
   388  
   389  \subsection{Later passes}
   390  \label{sec:laterPassesDirected}
   391  
   392  In phase two a `meta-graph' is constructed where nodes correspond to 
   393  the communities found in the preceding phase one step, and edge weight
   394  between two such communities (nodes, in the meta-graph)
   395  $\alpha$ and $\beta$ are defined to be
   396  \begin{equation}
   397  	B_{\alpha \beta}^* = \sum_{i \in \alpha}\sum_{j \in \beta}B_{ij}.
   398  	\label{eqn:Bij*}
   399  \end{equation} 
   400  Note that $i$ and $j$ refer to nodes in the original graph, not nodes 
   401  in the previous graph, and so holds any meta-graph, not just the first.
   402  Also note that this definition of $B^*_{\alpha \beta}$ allows for 
   403  $B^*_{\alpha \alpha}$ to be non-zero, in fact
   404  \begin{equation}
   405  B_{\alpha \alpha}^* = \sum_{i \in \alpha}\sum_{j \in \alpha}B_{ij} = \Sin{\alpha}.
   406  \end{equation} 
   407  
   408  In this newly constructed graph, $\alpha$ and $\beta$ are nodes, but 
   409  also refer to communities (sets of nodes) in the original graph, and I 
   410  use these two interpretations interchangeably, completely analogously to 
   411  Section \ref{sec:laterPasses}.
   412  
   413  The results of Section~\ref{sec:initialPassDirected} generalise to these meta-graphs,
   414  and the generalised results mirror those of Section~\ref{sec:initialPassDirected} closely
   415  -- I distinguish the new results from those of Section~\ref{sec:initialPassDirected} by a 
   416  superscript $*$.
   417  I use $i$ and $j$ to denote nodes of the original graph as in Sections~\ref{sec:initialPass}
   418  and \ref{sec:initialPassDirected}, 
   419  and use $z$ and $w$ to denote nodes of the meta-graph (communities of the original).
   420  I use analogous notation to Section~\ref{sec:initialPass}, $c^*(z)$, to 
   421  denote the community to which node $z$ of the meta-graph belongs, 
   422  and let $\mathfrak{a}$ be the community that the node $\alpha$ belongs to, 
   423  i.e., $\mathfrak{a} = c^*(\alpha) $.
   424  
   425  Given this notation, we get all the same results as in \ref{sec:laterPasses}, but 
   426  each split into two cases `out' and `in', separating by direction, essentially, so
   427  \newcommand{\dkinStar}[1]{k_{#1}^{\text{in} *}}
   428  \newcommand{\dkoutStar}[1]{k_{#1}^{\text{out} *}}
   429  \begin{equation}
   430  \dkoutStar{z} = \sum_w{B_{zw}^*} = \sum_w\sum_{i \in z}\sum_{j \in w}B_{ij} = \sum_{i \in z}\sum_jB_{ij} = \doutStot{z},
   431  \end{equation}
   432  \begin{equation}
   433  \dkinStar{z}  = \sum_w{B_{wz}^*} = \sum_w\sum_{i \in z}\sum_{j \in w}B_{ji} = \sum_{i \in z}\sum_jB_{ji} = \dinStot{z},
   434  \end{equation}
   435  \newcommand{\dinStotStar}[1]{\Sigma_{\text{tot}}^{\text{in}(#1) *}}
   436  \newcommand{\doutStotStar}[1]{\Sigma_{\text{tot}}^{\text{out}(#1) *}}
   437  \begin{equation}
   438  	\doutStotStar{\mathfrak{a}} = \sum_{z \in \mathfrak{a}}\sum_{w}B_{zw}^* = \sum_{z \in \mathfrak{a}}\dkoutStar{z} = \sum_{z \in \mathfrak{a}}\doutStot{z},
   439  \end{equation}
   440  \begin{equation}
   441  	\dinStotStar{\mathfrak{a}}  = \sum_{z \in \mathfrak{a}}\sum_{w}B_{wz}^* = \sum_{z \in \mathfrak{a}}\dkinStar{z}  = \sum_{z \in \mathfrak{a}}\dinStot{z},
   442  \end{equation}
   443  \newcommand{\dinkinStar}[2]{k_{#1}^{\text{in}(#2) *}}
   444  \newcommand{\doutkinStar}[2]{k_{#1}^{\text{out}(#2) *}}
   445  \begin{equation}
   446  	\doutkinStar{z}{\mathfrak{a}} = \sum_{w \in \mathfrak{a}}{B_{zw}^*} = \sum_{w \in \mathfrak{a}}{\sum_{i \in z}\sum_{j \in w}B_{ij}},
   447  \end{equation}
   448  \begin{equation}
   449  	\dinkinStar{z}{\mathfrak{a}}  = \sum_{w \in \mathfrak{a}}{B_{wz}^*} = \sum_{w \in \mathfrak{a}}{\sum_{i \in z}\sum_{j \in w}B_{ji}},
   450  \end{equation}
   451  and
   452  \begin{equation}
   453  \Sin{\mathfrak{a} *} = \sum_{z \in \mathfrak{a}}\sum_{w \in \mathfrak{a}}A_{zw}^* = \sum_{z \in \mathfrak{a}}\kin{z}{\mathfrak{a} *} = \sum_{z \in \mathfrak{a}}\sum_{w \in \mathfrak{a}}{\sum_{i \in z}\sum_{j \in w}A_{ij}}.
   454  	%\label{eqn:Sin}
   455  \end{equation}
   456  
   457  If we let $\mathfrak{b}$ denote the community to which we are considering moving $\alpha$,
   458  then the expression for $\Delta Q$ from Section~\ref{sec:initialPassDirected} simply generalises as
   459  \begin{align*}
   460  \Delta Q^{(3)} &= \frac{2}{2m}\left[ (\dinkinStar{\alpha}{\mathfrak{b}}-\dinkinStar{\alpha}{\mathfrak{a}}) + (\doutkinStar{\alpha}{\mathfrak{b}}-\doutkinStar{\alpha}{\mathfrak{a}}) + 2B_{\alpha\alpha}^* \right. \\
   461  & \hspace{-1cm} \left.
   462  - \frac{\gamma\dkoutStar{\alpha}}{2m} (\dinStotStar{\mathfrak{b}}-\dinStotStar{\mathfrak{a}}) - \frac{\gamma\dkinStar{\alpha}}{2m} (\doutStotStar{\mathfrak{b}} - \doutStotStar{\mathfrak{a}}) - \frac{2\gamma\dkinStar{\alpha}\dkoutStar{\alpha}}{2m} \right]
   463  \end{align*}
   464  
   465  
   466  \end{document}