gonum.org/v1/gonum@v0.14.0/graph/community/louvain_directed.go (about)

     1  // Copyright ©2015 The Gonum Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package community
     6  
     7  import (
     8  	"math"
     9  	"sort"
    10  
    11  	"golang.org/x/exp/rand"
    12  
    13  	"gonum.org/v1/gonum/graph"
    14  	"gonum.org/v1/gonum/graph/internal/ordered"
    15  	"gonum.org/v1/gonum/graph/internal/set"
    16  	"gonum.org/v1/gonum/graph/iterator"
    17  )
    18  
    19  // qDirected returns the modularity Q score of the graph g subdivided into the
    20  // given communities at the given resolution. If communities is nil, the
    21  // unclustered modularity score is returned. The resolution parameter
    22  // is γ as defined in Reichardt and Bornholdt doi:10.1103/PhysRevE.74.016110.
    23  // qDirected will panic if g has any edge with negative edge weight.
    24  //
    25  //	Q = 1/m \sum_{ij} [ A_{ij} - (\gamma k_i^in k_j^out)/m ] \delta(c_i,c_j)
    26  func qDirected(g graph.Directed, communities [][]graph.Node, resolution float64) float64 {
    27  	nodes := graph.NodesOf(g.Nodes())
    28  	weight := positiveWeightFuncFor(g)
    29  
    30  	// Calculate the total edge weight of the graph
    31  	// and the table of penetrating edge weight sums.
    32  	var m float64
    33  	k := make(map[int64]directedWeights, len(nodes))
    34  	for _, n := range nodes {
    35  		var wOut float64
    36  		u := n
    37  		uid := u.ID()
    38  		to := g.From(uid)
    39  		for to.Next() {
    40  			wOut += weight(uid, to.Node().ID())
    41  		}
    42  		var wIn float64
    43  		v := n
    44  		vid := v.ID()
    45  		from := g.To(vid)
    46  		for from.Next() {
    47  			wIn += weight(from.Node().ID(), vid)
    48  		}
    49  		id := n.ID()
    50  		w := weight(id, id)
    51  		m += w + wOut // We only need to count edges once.
    52  		k[id] = directedWeights{out: w + wOut, in: w + wIn}
    53  	}
    54  
    55  	if communities == nil {
    56  		var q float64
    57  		for _, u := range nodes {
    58  			uid := u.ID()
    59  			kU := k[uid]
    60  			q += weight(uid, uid) - resolution*kU.out*kU.in/m
    61  		}
    62  		return q / m
    63  	}
    64  
    65  	var q float64
    66  	for _, c := range communities {
    67  		for _, u := range c {
    68  			uid := u.ID()
    69  			kU := k[uid]
    70  			for _, v := range c {
    71  				vid := v.ID()
    72  				kV := k[vid]
    73  				q += weight(uid, vid) - resolution*kU.out*kV.in/m
    74  			}
    75  		}
    76  	}
    77  	return q / m
    78  }
    79  
    80  // louvainDirected returns the hierarchical modularization of g at the given
    81  // resolution using the Louvain algorithm. If src is nil, rand.Intn is used
    82  // as the random generator. louvainDirected will panic if g has any edge with negative
    83  // edge weight.
    84  func louvainDirected(g graph.Directed, resolution float64, src rand.Source) ReducedGraph {
    85  	// See louvain.tex for a detailed description
    86  	// of the algorithm used here.
    87  
    88  	c := reduceDirected(g, nil)
    89  	rnd := rand.Intn
    90  	if src != nil {
    91  		rnd = rand.New(src).Intn
    92  	}
    93  	for {
    94  		l := newDirectedLocalMover(c, c.communities, resolution)
    95  		if l == nil {
    96  			return c
    97  		}
    98  		if done := l.localMovingHeuristic(rnd); done {
    99  			return c
   100  		}
   101  		c = reduceDirected(c, l.communities)
   102  	}
   103  }
   104  
   105  // ReducedDirected is a directed graph of communities derived from a
   106  // parent graph by reduction.
   107  type ReducedDirected struct {
   108  	// nodes is the set of nodes held
   109  	// by the graph. In a ReducedDirected
   110  	// the node ID is the index into
   111  	// nodes.
   112  	nodes []community
   113  	directedEdges
   114  
   115  	// communities is the community
   116  	// structure of the graph.
   117  	communities [][]graph.Node
   118  
   119  	parent *ReducedDirected
   120  }
   121  
   122  var (
   123  	reducedDirected = (*ReducedDirected)(nil)
   124  
   125  	_ graph.WeightedDirected = reducedDirected
   126  	_ ReducedGraph           = reducedDirected
   127  )
   128  
   129  // Communities returns the community memberships of the nodes in the
   130  // graph used to generate the reduced graph.
   131  func (g *ReducedDirected) Communities() [][]graph.Node {
   132  	communities := make([][]graph.Node, len(g.communities))
   133  	if g.parent == nil {
   134  		for i, members := range g.communities {
   135  			comm := make([]graph.Node, len(members))
   136  			for j, n := range members {
   137  				nodes := g.nodes[n.ID()].nodes
   138  				if len(nodes) != 1 {
   139  					panic("community: unexpected number of nodes in base graph community")
   140  				}
   141  				comm[j] = nodes[0]
   142  			}
   143  			communities[i] = comm
   144  		}
   145  		return communities
   146  	}
   147  	sub := g.parent.Communities()
   148  	for i, members := range g.communities {
   149  		var comm []graph.Node
   150  		for _, n := range members {
   151  			comm = append(comm, sub[n.ID()]...)
   152  		}
   153  		communities[i] = comm
   154  	}
   155  	return communities
   156  }
   157  
   158  // Structure returns the community structure of the current level of
   159  // the module clustering. The first index of the returned value
   160  // corresponds to the index of the nodes in the next higher level if
   161  // it exists. The returned value should not be mutated.
   162  func (g *ReducedDirected) Structure() [][]graph.Node {
   163  	return g.communities
   164  }
   165  
   166  // Expanded returns the next lower level of the module clustering or nil
   167  // if at the lowest level.
   168  func (g *ReducedDirected) Expanded() ReducedGraph {
   169  	return g.parent
   170  }
   171  
   172  // reduceDirected returns a reduced graph constructed from g divided
   173  // into the given communities. The communities value is mutated
   174  // by the call to reduceDirected. If communities is nil and g is a
   175  // ReducedDirected, it is returned unaltered.
   176  func reduceDirected(g graph.Directed, communities [][]graph.Node) *ReducedDirected {
   177  	if communities == nil {
   178  		if r, ok := g.(*ReducedDirected); ok {
   179  			return r
   180  		}
   181  
   182  		nodes := graph.NodesOf(g.Nodes())
   183  		// TODO(kortschak) This sort is necessary really only
   184  		// for testing. In practice we would not be using the
   185  		// community provided by the user for a Q calculation.
   186  		// Probably we should use a function to map the
   187  		// communities in the test sets to the remapped order.
   188  		ordered.ByID(nodes)
   189  		communities = make([][]graph.Node, len(nodes))
   190  		for i := range nodes {
   191  			communities[i] = []graph.Node{node(i)}
   192  		}
   193  
   194  		weight := positiveWeightFuncFor(g)
   195  		r := ReducedDirected{
   196  			nodes: make([]community, len(nodes)),
   197  			directedEdges: directedEdges{
   198  				edgesFrom: make([][]int, len(nodes)),
   199  				edgesTo:   make([][]int, len(nodes)),
   200  				weights:   make(map[[2]int]float64),
   201  			},
   202  			communities: communities,
   203  		}
   204  		communityOf := make(map[int64]int, len(nodes))
   205  		for i, n := range nodes {
   206  			r.nodes[i] = community{id: i, nodes: []graph.Node{n}}
   207  			communityOf[n.ID()] = i
   208  		}
   209  		for _, n := range nodes {
   210  			id := communityOf[n.ID()]
   211  
   212  			var out []int
   213  			u := n
   214  			uid := u.ID()
   215  			to := g.From(uid)
   216  			for to.Next() {
   217  				vid := to.Node().ID()
   218  				vcid := communityOf[vid]
   219  				if vcid != id {
   220  					out = append(out, vcid)
   221  				}
   222  				r.weights[[2]int{id, vcid}] = weight(uid, vid)
   223  			}
   224  			r.edgesFrom[id] = out
   225  
   226  			var in []int
   227  			v := n
   228  			vid := v.ID()
   229  			from := g.To(vid)
   230  			for from.Next() {
   231  				uid := from.Node().ID()
   232  				ucid := communityOf[uid]
   233  				if ucid != id {
   234  					in = append(in, ucid)
   235  				}
   236  				r.weights[[2]int{ucid, id}] = weight(uid, vid)
   237  			}
   238  			r.edgesTo[id] = in
   239  		}
   240  		return &r
   241  	}
   242  
   243  	// Remove zero length communities destructively.
   244  	var commNodes int
   245  	for i := 0; i < len(communities); {
   246  		comm := communities[i]
   247  		if len(comm) == 0 {
   248  			communities[i] = communities[len(communities)-1]
   249  			communities[len(communities)-1] = nil
   250  			communities = communities[:len(communities)-1]
   251  		} else {
   252  			commNodes += len(comm)
   253  			i++
   254  		}
   255  	}
   256  
   257  	r := ReducedDirected{
   258  		nodes: make([]community, len(communities)),
   259  		directedEdges: directedEdges{
   260  			edgesFrom: make([][]int, len(communities)),
   261  			edgesTo:   make([][]int, len(communities)),
   262  			weights:   make(map[[2]int]float64),
   263  		},
   264  	}
   265  	r.communities = make([][]graph.Node, len(communities))
   266  	for i := range r.communities {
   267  		r.communities[i] = []graph.Node{node(i)}
   268  	}
   269  	if g, ok := g.(*ReducedDirected); ok {
   270  		// Make sure we retain the truncated
   271  		// community structure.
   272  		g.communities = communities
   273  		r.parent = g
   274  	}
   275  	weight := positiveWeightFuncFor(g)
   276  	communityOf := make(map[int64]int, commNodes)
   277  	for i, comm := range communities {
   278  		r.nodes[i] = community{id: i, nodes: comm}
   279  		for _, n := range comm {
   280  			communityOf[n.ID()] = i
   281  		}
   282  	}
   283  	for id, comm := range communities {
   284  		var out, in []int
   285  		for _, n := range comm {
   286  			u := n
   287  			uid := u.ID()
   288  			for _, v := range comm {
   289  				r.nodes[id].weight += weight(uid, v.ID())
   290  			}
   291  
   292  			to := g.From(uid)
   293  			for to.Next() {
   294  				vid := to.Node().ID()
   295  				vcid := communityOf[vid]
   296  				found := false
   297  				for _, e := range out {
   298  					if e == vcid {
   299  						found = true
   300  						break
   301  					}
   302  				}
   303  				if !found && vcid != id {
   304  					out = append(out, vcid)
   305  				}
   306  				// Add half weights because the other
   307  				// ends of edges are also counted.
   308  				r.weights[[2]int{id, vcid}] += weight(uid, vid) / 2
   309  			}
   310  
   311  			v := n
   312  			vid := v.ID()
   313  			from := g.To(vid)
   314  			for from.Next() {
   315  				uid := from.Node().ID()
   316  				ucid := communityOf[uid]
   317  				found := false
   318  				for _, e := range in {
   319  					if e == ucid {
   320  						found = true
   321  						break
   322  					}
   323  				}
   324  				if !found && ucid != id {
   325  					in = append(in, ucid)
   326  				}
   327  				// Add half weights because the other
   328  				// ends of edges are also counted.
   329  				r.weights[[2]int{ucid, id}] += weight(uid, vid) / 2
   330  			}
   331  		}
   332  		r.edgesFrom[id] = out
   333  		r.edgesTo[id] = in
   334  	}
   335  	return &r
   336  }
   337  
   338  // Node returns the node with the given ID if it exists in the graph,
   339  // and nil otherwise.
   340  func (g *ReducedDirected) Node(id int64) graph.Node {
   341  	if g.has(id) {
   342  		return g.nodes[id]
   343  	}
   344  	return nil
   345  }
   346  
   347  // has returns whether the node exists within the graph.
   348  func (g *ReducedDirected) has(id int64) bool {
   349  	return 0 <= id && id < int64(len(g.nodes))
   350  }
   351  
   352  // Nodes returns all the nodes in the graph.
   353  func (g *ReducedDirected) Nodes() graph.Nodes {
   354  	nodes := make([]graph.Node, len(g.nodes))
   355  	for i := range g.nodes {
   356  		nodes[i] = node(i)
   357  	}
   358  	return iterator.NewOrderedNodes(nodes)
   359  }
   360  
   361  // From returns all nodes in g that can be reached directly from u.
   362  func (g *ReducedDirected) From(uid int64) graph.Nodes {
   363  	out := g.edgesFrom[uid]
   364  	nodes := make([]graph.Node, len(out))
   365  	for i, vid := range out {
   366  		nodes[i] = g.nodes[vid]
   367  	}
   368  	return iterator.NewOrderedNodes(nodes)
   369  }
   370  
   371  // To returns all nodes in g that can reach directly to v.
   372  func (g *ReducedDirected) To(vid int64) graph.Nodes {
   373  	in := g.edgesTo[vid]
   374  	nodes := make([]graph.Node, len(in))
   375  	for i, uid := range in {
   376  		nodes[i] = g.nodes[uid]
   377  	}
   378  	return iterator.NewOrderedNodes(nodes)
   379  }
   380  
   381  // HasEdgeBetween returns whether an edge exists between nodes x and y.
   382  func (g *ReducedDirected) HasEdgeBetween(xid, yid int64) bool {
   383  	if xid == yid || !isValidID(xid) || !isValidID(yid) {
   384  		return false
   385  	}
   386  	_, ok := g.weights[[2]int{int(xid), int(yid)}]
   387  	if ok {
   388  		return true
   389  	}
   390  	_, ok = g.weights[[2]int{int(yid), int(xid)}]
   391  	return ok
   392  }
   393  
   394  // HasEdgeFromTo returns whether an edge exists from node u to v.
   395  func (g *ReducedDirected) HasEdgeFromTo(uid, vid int64) bool {
   396  	if uid == vid || !isValidID(uid) || !isValidID(vid) {
   397  		return false
   398  	}
   399  	_, ok := g.weights[[2]int{int(uid), int(vid)}]
   400  	return ok
   401  }
   402  
   403  // Edge returns the edge from u to v if such an edge exists and nil otherwise.
   404  // The node v must be directly reachable from u as defined by the From method.
   405  func (g *ReducedDirected) Edge(uid, vid int64) graph.Edge {
   406  	return g.WeightedEdge(uid, vid)
   407  }
   408  
   409  // WeightedEdge returns the weighted edge from u to v if such an edge exists and nil otherwise.
   410  // The node v must be directly reachable from u as defined by the From method.
   411  func (g *ReducedDirected) WeightedEdge(uid, vid int64) graph.WeightedEdge {
   412  	if uid == vid || !isValidID(uid) || !isValidID(vid) {
   413  		return nil
   414  	}
   415  	w, ok := g.weights[[2]int{int(uid), int(vid)}]
   416  	if !ok {
   417  		return nil
   418  	}
   419  	return edge{from: g.nodes[uid], to: g.nodes[vid], weight: w}
   420  }
   421  
   422  // Weight returns the weight for the edge between x and y if Edge(x, y) returns a non-nil Edge.
   423  // If x and y are the same node the internal node weight is returned. If there is no joining
   424  // edge between the two nodes the weight value returned is zero. Weight returns true if an edge
   425  // exists between x and y or if x and y have the same ID, false otherwise.
   426  func (g *ReducedDirected) Weight(xid, yid int64) (w float64, ok bool) {
   427  	if !isValidID(xid) || !isValidID(yid) {
   428  		return 0, false
   429  	}
   430  	if xid == yid {
   431  		return g.nodes[xid].weight, true
   432  	}
   433  	w, ok = g.weights[[2]int{int(xid), int(yid)}]
   434  	return w, ok
   435  }
   436  
   437  // directedLocalMover is a step in graph modularity optimization.
   438  type directedLocalMover struct {
   439  	g *ReducedDirected
   440  
   441  	// nodes is the set of working nodes.
   442  	nodes []graph.Node
   443  	// edgeWeightsOf is the weighted degree
   444  	// of each node indexed by ID.
   445  	edgeWeightsOf []directedWeights
   446  
   447  	// m is the total sum of edge
   448  	// weights in g.
   449  	m float64
   450  
   451  	// weight is the weight function
   452  	// provided by g or a function
   453  	// that returns the Weight value
   454  	// of the non-nil edge between x
   455  	// and y.
   456  	weight func(xid, yid int64) float64
   457  
   458  	// communities is the current
   459  	// division of g.
   460  	communities [][]graph.Node
   461  	// memberships is a mapping between
   462  	// node ID and community membership.
   463  	memberships []int
   464  
   465  	// resolution is the Reichardt and
   466  	// Bornholdt γ parameter as defined
   467  	// in doi:10.1103/PhysRevE.74.016110.
   468  	resolution float64
   469  
   470  	// moved indicates that a call to
   471  	// move has been made since the last
   472  	// call to shuffle.
   473  	moved bool
   474  
   475  	// changed indicates that a move
   476  	// has been made since the creation
   477  	// of the local mover.
   478  	changed bool
   479  }
   480  
   481  type directedWeights struct {
   482  	out, in float64
   483  }
   484  
   485  // newDirectedLocalMover returns a new directedLocalMover initialized with
   486  // the graph g, a set of communities and a modularity resolution parameter.
   487  // The node IDs of g must be contiguous in [0,n) where n is the number of
   488  // nodes.
   489  // If g has a zero edge weight sum, nil is returned.
   490  func newDirectedLocalMover(g *ReducedDirected, communities [][]graph.Node, resolution float64) *directedLocalMover {
   491  	nodes := graph.NodesOf(g.Nodes())
   492  	l := directedLocalMover{
   493  		g:             g,
   494  		nodes:         nodes,
   495  		edgeWeightsOf: make([]directedWeights, len(nodes)),
   496  		communities:   communities,
   497  		memberships:   make([]int, len(nodes)),
   498  		resolution:    resolution,
   499  		weight:        positiveWeightFuncFor(g),
   500  	}
   501  
   502  	// Calculate the total edge weight of the graph
   503  	// and degree weights for each node.
   504  	for _, n := range l.nodes {
   505  		u := n
   506  		var wOut float64
   507  		uid := u.ID()
   508  		to := g.From(uid)
   509  		for to.Next() {
   510  			wOut += l.weight(uid, to.Node().ID())
   511  		}
   512  
   513  		v := n
   514  		var wIn float64
   515  		vid := v.ID()
   516  		from := g.To(vid)
   517  		for from.Next() {
   518  			wIn += l.weight(from.Node().ID(), vid)
   519  		}
   520  
   521  		id := n.ID()
   522  		w := l.weight(id, id)
   523  		l.edgeWeightsOf[id] = directedWeights{out: w + wOut, in: w + wIn}
   524  		l.m += w + wOut
   525  	}
   526  
   527  	// Assign membership mappings.
   528  	for i, c := range communities {
   529  		for _, n := range c {
   530  			l.memberships[n.ID()] = i
   531  		}
   532  	}
   533  
   534  	return &l
   535  }
   536  
   537  // localMovingHeuristic performs the Louvain local moving heuristic until
   538  // no further moves can be made. It returns a boolean indicating that the
   539  // directedLocalMover has not made any improvement to the community structure and
   540  // so the Louvain algorithm is done.
   541  func (l *directedLocalMover) localMovingHeuristic(rnd func(int) int) (done bool) {
   542  	for {
   543  		l.shuffle(rnd)
   544  		for _, n := range l.nodes {
   545  			dQ, dst, src := l.deltaQ(n)
   546  			if dQ <= deltaQtol {
   547  				continue
   548  			}
   549  			l.move(dst, src)
   550  		}
   551  		if !l.moved {
   552  			return !l.changed
   553  		}
   554  	}
   555  }
   556  
   557  // shuffle performs a Fisher-Yates shuffle on the nodes held by the
   558  // directedLocalMover using the random source rnd which should return an
   559  // integer in the range [0,n).
   560  func (l *directedLocalMover) shuffle(rnd func(n int) int) {
   561  	l.moved = false
   562  	for i := range l.nodes[:len(l.nodes)-1] {
   563  		j := i + rnd(len(l.nodes)-i)
   564  		l.nodes[i], l.nodes[j] = l.nodes[j], l.nodes[i]
   565  	}
   566  }
   567  
   568  // move moves the node at src to the community at dst.
   569  func (l *directedLocalMover) move(dst int, src commIdx) {
   570  	l.moved = true
   571  	l.changed = true
   572  
   573  	srcComm := l.communities[src.community]
   574  	n := srcComm[src.node]
   575  
   576  	l.memberships[n.ID()] = dst
   577  
   578  	l.communities[dst] = append(l.communities[dst], n)
   579  	srcComm[src.node], srcComm[len(srcComm)-1] = srcComm[len(srcComm)-1], nil
   580  	l.communities[src.community] = srcComm[:len(srcComm)-1]
   581  }
   582  
   583  // deltaQ returns the highest gain in modularity attainable by moving
   584  // n from its current community to another connected community and
   585  // the index of the chosen destination. The index into the directedLocalMover's
   586  // communities field is returned in src if n is in communities.
   587  func (l *directedLocalMover) deltaQ(n graph.Node) (deltaQ float64, dst int, src commIdx) {
   588  	id := n.ID()
   589  
   590  	a_aa := l.weight(id, id)
   591  	k_a := l.edgeWeightsOf[id]
   592  	m := l.m
   593  	gamma := l.resolution
   594  
   595  	// Find communities connected to n.
   596  	connected := make(set.Ints)
   597  	// The following for loop is equivalent to:
   598  	//
   599  	//  for _, v := range l.g.From(n) {
   600  	//  	connected.Add(l.memberships[v.ID()])
   601  	//  }
   602  	//  for _, v := range l.g.To(n) {
   603  	//  	connected.Add(l.memberships[v.ID()])
   604  	//  }
   605  	//
   606  	// This is done to avoid two allocations.
   607  	for _, vid := range l.g.edgesFrom[id] {
   608  		connected.Add(l.memberships[vid])
   609  	}
   610  	for _, vid := range l.g.edgesTo[id] {
   611  		connected.Add(l.memberships[vid])
   612  	}
   613  	// Insert the node's own community.
   614  	connected.Add(l.memberships[id])
   615  
   616  	candidates := make([]int, 0, len(connected))
   617  	for i := range connected {
   618  		candidates = append(candidates, i)
   619  	}
   620  	sort.Ints(candidates)
   621  
   622  	// Calculate the highest modularity gain
   623  	// from moving into another community and
   624  	// keep the index of that community.
   625  	var dQremove float64
   626  	dQadd, dst, src := math.Inf(-1), -1, commIdx{-1, -1}
   627  	for _, i := range candidates {
   628  		c := l.communities[i]
   629  		var k_aC, sigma_totC directedWeights // C is a substitution for ^𝛼 or ^𝛽.
   630  		var removal bool
   631  		for j, u := range c {
   632  			uid := u.ID()
   633  			if uid == id {
   634  				if src.community != -1 {
   635  					panic("community: multiple sources")
   636  				}
   637  				src = commIdx{i, j}
   638  				removal = true
   639  			}
   640  
   641  			k_aC.in += l.weight(uid, id)
   642  			k_aC.out += l.weight(id, uid)
   643  			// sigma_totC could be kept for each community
   644  			// and updated for moves, changing the calculation
   645  			// of sigma_totC here from O(n_c) to O(1), but
   646  			// in practice the time savings do not appear
   647  			// to be compelling and do not make up for the
   648  			// increase in code complexity and space required.
   649  			w := l.edgeWeightsOf[uid]
   650  			sigma_totC.in += w.in
   651  			sigma_totC.out += w.out
   652  		}
   653  
   654  		// See louvain.tex for a derivation of these equations.
   655  		switch {
   656  		case removal:
   657  			// The community c was the current community,
   658  			// so calculate the change due to removal.
   659  			dQremove = (k_aC.in /*^𝛼*/ - a_aa) + (k_aC.out /*^𝛼*/ - a_aa) -
   660  				gamma*(k_a.in*(sigma_totC.out /*^𝛼*/ -k_a.out)+k_a.out*(sigma_totC.in /*^𝛼*/ -k_a.in))/m
   661  
   662  		default:
   663  			// Otherwise calculate the change due to an addition
   664  			// to c and retain if it is the current best.
   665  			dQ := k_aC.in /*^𝛽*/ + k_aC.out /*^𝛽*/ -
   666  				gamma*(k_a.in*sigma_totC.out /*^𝛽*/ +k_a.out*sigma_totC.in /*^𝛽*/)/m
   667  
   668  			if dQ > dQadd {
   669  				dQadd = dQ
   670  				dst = i
   671  			}
   672  		}
   673  	}
   674  
   675  	return (dQadd - dQremove) / m, dst, src
   676  }