gonum.org/v1/gonum@v0.14.0/integrate/quad/internal/hermpts.m (about)

     1  % Copyright (c) 2015, The Chancellor, Masters and Scholars of the University 
     2  % of Oxford, and the Chebfun Developers.
     3  % Copyright (c) 2016 The Gonum Authors
     4  % All rights reserved.
     5  %
     6  % Redistribution and use in source and binary forms, with or without
     7  % modification, are permitted provided that the following conditions are met:
     8  %     * Redistributions of source code must retain the above copyright
     9  %       notice, this list of conditions and the following disclaimer.
    10  %     * Redistributions in binary form must reproduce the above copyright
    11  %       notice, this list of conditions and the following disclaimer in the
    12  %       documentation and/or other materials provided with the distribution.
    13  %     * Neither the name of the University of Oxford nor the names of its 
    14  %       contributors may be used to endorse or promote products derived from 
    15  %       this software without specific prior written permission.
    16  %
    17  % THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
    18  % ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
    19  % WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
    20  % DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR 
    21  % ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
    22  % (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
    23  % LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
    24  % ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    25  % (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
    26  % SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
    27  
    28  
    29  function [x, w, v] = hermpts(n, varargin)
    30  %HERMPTS   Hermite points and Gauss-Hermite Quadrature Weights.
    31  %   HERMPTS(N) returns N Hermite points X in (-inf, inf). By default these are
    32  %   roots of the 'physicist'-type Hermite polynomials, which are orthogonal with
    33  %   respect to the weight exp(-x.^2).
    34  %
    35  %   HERMPTS(N, 'PROB') normalises instead by the probablist's definition (with
    36  %   weight exp(-x.^2/2)), which gives rise to monomials.
    37  %
    38  %   [X, W] = HERMPTS(N) returns also a row vector W of weights for Gauss-Hermite
    39  %   quadrature. [X,W,V] = HERMPTS(N) returns in addition a column vector V of
    40  %   the barycentric weights corresponding to X.
    41  %
    42  %   [X, W] = HERMPTS(N, METHOD) where METHOD is one of 'GW', 'REC', 'GLR', or 
    43  %   'ASY' allows the user to select which method is used. 'GW' will use the 
    44  %   traditional Golub-Welsch eigenvalue method [1], best when n<=20. 'REC' 
    45  %   uses Newton's method with polynomial evaluation via the 3-term 
    46  %   recurrence for Hermite polynomials. 'GLR' uses Glaser-Liu-Rokhlin 
    47  %   fast algorithm which is much faster for large N [2]. 'ASY' uses Newton's 
    48  %   method with polynomial evaluation via asymptotic formula. 'ASY' is the 
    49  %   fastest for N>=200, 'GLR' is the most accurate for nodes close to 0. 
    50  %   By default HERMPTS uses 'GW' when N <= 20, 'REC' for 21<=N<200, and
    51  %   'ASY' when N>=200. 
    52  %
    53  % References:
    54  %   [1] G. H. Golub and J. A. Welsch, "Calculation of Gauss quadrature
    55  %       rules", Math. Comp. 23:221-230, 1969,
    56  %   [2] A. Glaser, X. Liu and V. Rokhlin, "A fast algorithm for the
    57  %       calculation of the roots of special functions", SIAM Journal
    58  %       on Scientific Computing", 29(4):1420-1438:, 2007.
    59  %   [3] A. Townsend, T. Trogdon and S. Olver, Fast computation of Gauss
    60  %       nodes and weights on the whole real line, submitted, 2014. 
    61  %
    62  % See also CHEBPTS, LEGPTS, LAGPTS, and JACPTS.
    63  
    64  % Copyright 2015 by The University of Oxford and The Chebfun Developers. 
    65  % See http://www.chebfun.org/ for Chebfun information.
    66  %
    67  % 'GW' by Nick Trefethen, March 2009 - algorithm adapted from [1].
    68  % 'GLR' by Nick Hale, March 2010 - algorithm adapted from [2].
    69  
    70  % Defaults:
    71  method = 'default';
    72  type = 'phys';
    73  
    74  if ( n < 0 )
    75      error('CHEBFUN:hermpts:n', 'First input should be a positive integer.');
    76  end
    77  
    78  % Return empty vector if n = 0.
    79  if ( n == 0 )
    80      [x, w, v] = deal([]); 
    81      return
    82  end
    83  
    84  % Check the inputs
    85  while ( ~isempty(varargin) )
    86      s = varargin{1}; 
    87      varargin(1) = [];
    88      if ( strcmpi(s, 'GW') )
    89          method = 'GW';
    90      elseif ( strcmpi(s,'glr') )
    91          method = 'GLR';  
    92      elseif ( strcmpi(s,'rec') )
    93          method = 'REC';
    94      elseif ( strcmpi(s,'asy') )
    95          method = 'ASY';
    96      elseif ( strncmpi(s, 'phys', 3) )
    97          type = 'phys';
    98      elseif ( strncmpi(s, 'prob', 3) )
    99          type = 'prob'; 
   100      else
   101          error('CHEBFUN:hermpts:input', 'Unrecognised input string; %s.', s);
   102      end
   103  end
   104  
   105  % Three cases: 
   106  % 
   107  %  N <= 20:  Use GW
   108  %  21<=N<200: Use REC
   109  %  N>=200: Use ASY
   110  if ( n == 1 )
   111      % n = 1 case is trivial
   112      x = 0; 
   113      w = sqrt(pi); 
   114      v = 1;           
   115      
   116  elseif ( (n < 21 && strcmpi(method,'default')) || strcmpi(method,'GW') )
   117      % GW, see [1]
   118      
   119      beta = sqrt(.5*(1:n-1));              % 3-term recurrence coeffs
   120      T = diag(beta, 1) + diag(beta, -1);   % Jacobi matrix
   121      [V, D] = eig(T);                      % Eigenvalue decomposition
   122      [x, indx] = sort(diag(D));            % Hermite points
   123      w = sqrt(pi)*V(1, indx).^2;           % weights
   124      v = abs(V(1, indx)).';                % Barycentric weights
   125      v = v./max(v);                        % Normalize
   126      v(2:2:n) = -v(2:2:n);
   127      
   128      % Enforce symmetry:
   129      ii = 1:floor(n/2);  
   130      x = x(ii);  
   131      w = w(ii);
   132      vmid = v(floor(n/2)+1); 
   133      v = v(ii);
   134      if ( mod(n, 2) )
   135          x = [x ; 0 ; -x(end:-1:1)];   
   136          w = [w, sqrt(pi) - sum(2*w), w(end:-1:1)];
   137          v = [v ; vmid ; v(end:-1:1)];
   138      else
   139          x = [x ; -x(end:-1:1)];
   140          w = [w, w(end:-1:1)];
   141          v = [v ; -v(end:-1:1)];
   142      end
   143      
   144  elseif ( strcmpi(method,'GLR') )
   145      % Fast, see [2]
   146      
   147      [x, ders] = alg0_Herm(n);             % Nodes and H_n'(x)
   148      w = (2*exp(-x.^2)./ders.^2)';         % Quadrature weights
   149      v = exp(-x.^2/2)./ders;               % Barycentric weights
   150      v = v./max(abs(v));                   % Normalize
   151      if ( ~mod(n, 2) )
   152          ii = (n/2+1):n; 
   153          v(ii) = -v(ii); 
   154      end
   155      
   156  elseif ( (n < 200 && strcmpi(method,'default')) || strcmpi(method,'REC') )
   157      
   158      [x, w, v] = hermpts_rec( n ); 
   159      
   160  else
   161      
   162      [x, w, v] = hermpts_asy( n ); 
   163      
   164  end
   165  
   166  % Normalise so that sum(w) = sqrt(pi)
   167  w = (sqrt(pi)/sum(w))*w;                  
   168  
   169  if ( strcmpi(type, 'prob') )
   170      x = x*sqrt(2);
   171      w = w*sqrt(2);
   172  end
   173  
   174  end
   175  
   176  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   177  %% %%%%%%%%%%%%%%%%%%%%%%% Routines for GLR algorithm %%%%%%%%%%%%%%%%%%%%%%%%%
   178  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   179  
   180  % Driver for 'GLR'.
   181  function [roots, ders] = alg0_Herm(n) 
   182  % Compute coefficients of H_m(0), H_m'(0), m = 0,..,N.
   183  
   184  Hm2 = 0; 
   185  Hm1 = pi^(-1/4); 
   186  Hpm2 = 0; 
   187  Hpm1 = 0;
   188  for k = 0:n-1
   189      H = -sqrt(k/(k+1))*Hm2;
   190      Hp = sqrt(2/(k+1))*Hm1-sqrt(k/(k+1))*Hpm2;
   191      Hm2 = Hm1; 
   192      Hm1 = H; 
   193      Hpm2 = Hpm1; 
   194      Hpm1 = Hp;
   195  end
   196  
   197  % allocate storage
   198  roots = zeros(n, 1); 
   199  ders = zeros(n, 1);                      
   200  if ( mod(n,2) )
   201      % zero is a root:
   202      roots((n-1)/2) = 0; 
   203      ders((n+1)/2) = Hp;         
   204  else
   205      % find first root:
   206      [roots(n/2+1), ders(n/2+1)] = alg2_Herm(H,n); 
   207  end        
   208  
   209  % compute roots and derivatives:
   210  [roots, ders] = alg1_Herm(roots, ders); 
   211  
   212  end
   213  
   214  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   215  
   216  % Main algorithm for 'GLR'
   217  function [roots, ders] = alg1_Herm(roots, ders) 
   218  
   219  n = length(roots);
   220  s = mod(n, 2);
   221  N = (n - s) / 2;
   222  
   223  % number of terms in Taylor expansion
   224  m = 30; 
   225  
   226  % initialise
   227  hh1 = ones(m + 1, 1); 
   228  u = zeros(1, m + 1); 
   229  up = zeros(1, m + 1);
   230  
   231  for j = (N + 1):(n - 1)
   232      
   233      % previous root
   234      x = roots(j); 
   235      
   236      % initial approx
   237      h = rk2_Herm(pi/2,-pi/2,x,n) - x;
   238  
   239      % scaling
   240      M = 1/h;
   241      
   242      % recurrence relation for Hermite polynomials
   243      c1 = -(2*n+1-x^2)/M^2; 
   244      c2 = 2*x./M^3; 
   245      c3 = 1./M^4;
   246      u(1) = 0; 
   247      u(2) = ders(j)/M; 
   248      u(3) = .5*c1*u(1);
   249      u(4) = (c1*u(2) + c2*u(1))/6;
   250      up(1) = u(2); 
   251      up(2) = 2*u(3)*M; 
   252      up(3) = 3*u(4)*M; 
   253      up(m+1) = 0;
   254      
   255      for k = 2:m-2
   256          u(k+3) = (c1*u(k+1) + c2*u(k) + c3*u(k-1))/((k+1)*(k+2));
   257          up(k+2) = (k+2)*u(k+3)*M;
   258      end
   259    
   260      % flip for more accuracy in inner product calculation
   261      u = u(m+1:-1:1);       
   262      up = up(m+1:-1:1);
   263      
   264      % Newton iteration
   265      hh = hh1; 
   266      hh(end) = M;    
   267      step = inf;  
   268      l = 0; 
   269      z = zeros(m, 1);
   270      while ( (abs(step) > eps) && (l < 10) )
   271          l = l + 1;
   272          step = (u*hh)/(up*hh);
   273          h = h - step;
   274          % powers of h (This is the fastest way!)
   275          hh = [M ; cumprod(M*h + z)]; 
   276          % flip for more accuracy in inner product calculation
   277          hh = hh(end:-1:1); 
   278      end
   279      
   280      % update
   281      roots(j+1) = x + h;
   282      ders(j+1) = up*hh;
   283  end
   284  
   285  % nodes are symmetric
   286  roots(1:N+s) = -roots(n:-1:N+1);
   287  ders(1:N+s) = ders(n:-1:N+1);
   288  
   289  end
   290  
   291  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   292  
   293  % find the first root (note H_n'(0) = 0)
   294  function [x1, d1] = alg2_Herm(Hn0, n) 
   295  
   296  % advance ODE via Runge-Kutta for initial approx
   297  x1 = rk2_Herm(0, -pi/2, 0, n);
   298  
   299  % number of terms in Taylor expansion
   300  m = 30; 
   301  
   302  % scaling
   303  M = 1/x1;
   304  % c = log10(n);
   305  % M = 1./x1.^(1-1.25/(c));
   306  
   307  % initialise
   308  u = zeros(1,m+1); 
   309  up = zeros(1,m+1);
   310  
   311  % recurrence relation for Legendre polynomials
   312  u(1) = Hn0; 
   313  u(3) = -.5*(2*n+1)*u(1)/M^2;
   314  up(1) = 0; 
   315  up(2) = 2*u(3)*M;
   316  for k = 2:2:m-2
   317      u(k+3) = (-(2*n+1)*u(k+1)/M^2 + u(k-1)/M^4)/((k+1)*(k+2));
   318      up(k+2) = (k+2)*u(k+3)*M;
   319  end
   320  
   321  % flip for more accuracy in inner product calculation
   322  u = u(m+1:-1:1);
   323  up = up(m+1:-1:1);
   324  
   325  z = zeros(m, 1);
   326  x1k = [M ; cumprod(M*x1 + z)];
   327  step = inf; 
   328  l = 0;
   329  % Newton iteration
   330  while ( (abs(step) > eps) && (l < 10) )
   331      l = l + 1;
   332      step = (u*x1k)/(up*x1k);
   333      x1 = x1 - step;
   334      % powers of h (This is the fastest way!)
   335      x1k = [1 ; cumprod(M*x1 + z)]; 
   336      x1k = x1k(end:-1:1);
   337  end
   338  
   339  % Update derivative
   340  d1 = up*x1k;
   341  
   342  end
   343  
   344  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   345  
   346  % Runge-Kutta for Hermite Equation
   347  function x = rk2_Herm(t, tn, x, n) 
   348  m = 10; 
   349  h = (tn-t)/m;
   350  for j = 1:m
   351      k1 = -h/(sqrt(2*n+1-x^2) - .5*x*sin(2*t)/(2*n+1-x^2));
   352      t = t + h;
   353      k2 = -h/(sqrt(2*n+1-(x+k1)^2) - .5*x*sin(2*t)/(2*n+1-(x+k1)^2));
   354      x = x + .5*(k1 + k2);
   355  end
   356  end
   357  
   358  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   359  %% %%%%%%%%%%%%%%%%%%%%%%% Routines for ASY algorithm %%%%%%%%%%%%%%%%%%%%%%%%%
   360  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   361  
   362  function [x, w, v] = hermpts_asy(n)
   363  % HERMPTS_ASY, fast algorithm for computing Gauss-Hermite nodes and weights 
   364  % using Newton's method with polynomial evaluation via asymptotic expansions.  
   365  % 
   366  %  x = Gauss-Hermite nodes, w = quad weights, v = bary weights.
   367  % 
   368  %  See [3]. 
   369  
   370  [x, w, v] = hermpts_asy0( n );   
   371  
   372  if mod(n,2) == 1                              % fold out
   373      x = [-x(end:-1:1);x(2:end)];
   374      w = [w(end:-1:1) w(2:end)]; w = (sqrt(pi)/sum(w))*w;
   375      v = [v(end:-1:1);v(2:end)]; v = v./max(abs(v));
   376  else
   377      x = [-x(end:-1:1);x];
   378      w = [w(end:-1:1) w]; w = (sqrt(pi)/sum(w))*w;
   379      v = [v(end:-1:1);-v]; v = v./max(abs(v));
   380  end
   381  
   382  % debug
   383  %tic, exact = hermpts(n); toc
   384  %semilogy(abs(exact-x))
   385  end
   386  
   387  function [x, w, v] = hermpts_asy0(n)
   388  % Compute Hermite nodes and weights using asymptotic formula
   389  
   390  x0 = HermiteInitialGuesses(n);   % get initial guesses
   391  t0 = x0./sqrt(2*n+1);
   392  theta0 = acos(t0);               % convert to theta-variable
   393  for k = 1:20
   394      [val, dval] = hermpoly_asy_airy(n, theta0);
   395      dt = -val./(sqrt(2)*sqrt(2*n+1)*dval.*sin(theta0));
   396      theta0 = theta0 - dt;                        % Newton update
   397      if norm(dt,inf) < sqrt(eps)/10, break; end
   398  end
   399  t0 = cos(theta0);
   400  x = sqrt(2*n+1)*t0;                          % back to x-variable
   401  
   402  ders = x.*val + sqrt(2)*dval;
   403  %ders = dval;
   404  w = (exp(-x.^2)./ders.^2)';            % quadrature weights
   405  
   406  v = exp(-x.^2/2)./ders;               % Barycentric weights
   407  end
   408  
   409  function [val, dval] = hermpoly_asy_airy(n, theta)
   410  % HERMPOLY_ASY evaluation hermite poly using Airy asymptotic formula in
   411  % theta-space.
   412  
   413  musq = 2*n+1;
   414  cosT = cos(theta); sinT = sin(theta);
   415  sin2T = 2*cosT.*sinT;
   416  eta = .5*theta - .25*sin2T;
   417  chi = -(3*eta/2).^(2/3);
   418  phi = (-chi./sinT.^2).^(1/4);
   419  const = 2*sqrt(pi)*musq^(1/6)*phi; 
   420  Airy0 = real(airy(musq.^(2/3)*chi));
   421  Airy1 = real(airy(1,musq.^(2/3)*chi));
   422  
   423  % Terms in (12.10.43):
   424  a0 = 1; b0 = 1;
   425  a1 = 15/144; b1 = -7/5*a1;
   426  a2 = 5*7*9*11/2/144^2; b2 = -13/11*a2;
   427  a3 = 7*9*11*13*15*17/6/144^3;
   428  b3 = -19/17*a3;
   429  
   430  % u polynomials in (12.10.9)
   431  u0 = 1; u1 = (cosT.^3-6*cosT)/24;
   432  u2 = (-9*cosT.^4 + 249*cosT.^2 + 145)/1152;
   433  u3 = (-4042*cosT.^9+18189*cosT.^7-28287*cosT.^5-151995*cosT.^3-259290*cosT)/414720;
   434  
   435  %first term
   436  A0 = 1;
   437  val = A0*Airy0;
   438  
   439  %second term
   440  B0 = -(a0*phi.^6.*u1+a1*u0)./chi.^2;
   441  val = val + B0.*Airy1./musq.^(4/3);
   442  
   443  %third term
   444  A1 = (b0*phi.^12.*u2 + b1*phi.^6.*u1 + b2*u0)./chi.^3;
   445  val = val + A1.*Airy0/musq.^2;
   446  
   447  %fourth term
   448  B1 = -(phi.^18.*u3 + a1*phi.^12.*u2 + a2*phi.^6.*u1 + a3*u0)./chi.^5;
   449  val = val + B1.*Airy1./musq.^(4/3+2);
   450  
   451  val = const.*val;
   452  
   453  %% Derivative
   454  
   455  eta = .5*theta - .25*sin2T;
   456  chi = -(3*eta/2).^(2/3);
   457  phi = (-chi./sinT.^2).^(1/4);
   458  const = sqrt(2*pi)*musq^(1/3)./phi;
   459  
   460  % v polynomials in (12.10.10)
   461  v0 = 1; v1 = (cosT.^3+6*cosT)/24;
   462  v2 = (15*cosT.^4-327*cosT.^2-143)/1152;
   463  v3 = (259290*cosT + 238425*cosT.^3 - 36387*cosT.^5 + 18189*cosT.^7 -...
   464      4042*cosT.^9)/414720;
   465  
   466  %first term
   467  C0 = -(b0*phi.^6.*v1 + b1.*v0)./chi;
   468  dval = C0.*Airy0/musq.^(2/3);
   469  
   470  % %second term
   471  D0 =  a0*v0;
   472  dval = dval + D0*Airy1;
   473  
   474  % %third term
   475  C1 = -(phi.^18.*v3 + b1*phi.^12.*v2 + b2*phi.^6.*v1 + b3*v0)./chi.^4;
   476  dval = dval + C1.*Airy0/musq.^(2/3+2);
   477  
   478  %fourth term
   479  D1 = (a0*phi.^12.*v2 + a1*phi.^6.*v1 + a2*v0)./chi.^3;
   480  dval = dval + D1.*Airy1/musq.^2;
   481  
   482  dval = const.*dval;
   483  
   484  end
   485  
   486  function x_init = HermiteInitialGuesses(n)
   487  %HERMITEINTITIALGUESSES(N), Initial guesses for Hermite zeros.
   488  %
   489  % [1] L. Gatteschi, Asymptotics and bounds for the zeros of Laguerre
   490  % polynomials: a survey, J. Comput. Appl. Math., 144 (2002), pp. 7-27.
   491  %
   492  % [2] F. G. Tricomi, Sugli zeri delle funzioni di cui si conosce una
   493  % rappresentazione asintotica, Ann. Mat. Pura Appl. 26 (1947), pp. 283-300.
   494  
   495  % Gatteschi formula involving airy roots [1].
   496  % These initial guess are good near x = sqrt(n+1/2);
   497  if mod(n,2) == 1
   498      m = (n-1)/2; bess = (1:m)'*pi; a = .5;
   499  else
   500      m = n/2; bess = ((0:m-1)'+.5)*pi; a = -.5;
   501  end
   502  nu = 4*m + 2*a + 2;
   503  T = @(t) t.^(2/3).*(1+5/48*t.^(-2)-5/36*t.^(-4)+(77125/82944)*t.^(-6) -...
   504      108056875/6967296*t.^(-8)+162375596875/334430208*t.^(-10));
   505  airyrts = -T(3/8*pi*(4*(1:m)'-1));
   506  
   507  airyrts_exact = [  -2.338107410459762           % Exact Airy roots.
   508      -4.087949444130970
   509      -5.520559828095555
   510      -6.786708090071765
   511      -7.944133587120863
   512      -9.022650853340979
   513      -10.040174341558084
   514      -11.008524303733260
   515      -11.936015563236262
   516      -12.828776752865757];
   517  airyrts(1:10) = airyrts_exact;  % correct first 10.
   518  
   519  x_init = sqrt(nu + 2^(2/3)*airyrts*nu^(1/3) +...
   520      1/5*2^(4/3)*airyrts.^2*nu^(-1/3) +...
   521      (11/35-a^2-12/175*airyrts.^3)/nu +...
   522      (16/1575*airyrts+92/7875*airyrts.^4)*2^(2/3)*nu^(-5/3) -...
   523      (15152/3031875*airyrts.^5+1088/121275*airyrts.^2)*2^(1/3)*nu^(-7/3));
   524  x_init_airy = real(x_init(end:-1:1));
   525  
   526  % Tricomi initial guesses. Equation (2.1) in [1]. Originally in [2].
   527  % These initial guesses are good near x = 0 . Note: zeros of besselj(+/-.5,x)
   528  % are integer and half-integer multiples of pi.
   529  % x_init_bess =  bess/sqrt(nu).*sqrt((1+ (bess.^2+2*(a^2-1))/3/nu^2) );
   530  Tnk0 = pi/2*ones(m,1);
   531  nu = (4*m+2*a+2);
   532  rhs = (4*m-4*(1:m)'+3)./nu*pi;
   533  
   534  for k = 1:7
   535      val = Tnk0 - sin(Tnk0) - rhs;
   536      dval = 1 - cos(Tnk0);
   537      dTnk0 = val./dval;
   538      Tnk0 = Tnk0 - dTnk0;
   539  end
   540  
   541  tnk = cos(Tnk0/2).^2;
   542  x_init_sin = sqrt(nu*tnk - (5./(4*(1-tnk).^2) - 1./(1-tnk)-1+3*a^2)/3/nu);
   543  
   544  % Patch together
   545  p = 0.4985+eps;
   546  x_init = [x_init_sin(1:floor(p*n));x_init_airy(ceil(p*n):end)];
   547  
   548  
   549  if mod(n,2) == 1
   550      x_init = [0;x_init];
   551      x_init = x_init(1:m+1); 
   552  else
   553      x_init = x_init(1:m); 
   554  end
   555  
   556  % debug:
   557  %y = hermpts(n);
   558  %semilogy(abs(y - x_init));
   559  %yhalf = -y(m:-1:1);
   560  %semilogy(abs(yhalf - x_init));
   561  end
   562  
   563  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   564  %% %%%%%%%%%%%%%%%%%%%%%%% Routines for REC algorithm %%%%%%%%%%%%%%%%%%%%%%%%%
   565  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   566  
   567  function [x, w, v] = hermpts_rec(n)
   568  % Compute Hermite nodes and weights using recurrence relation.
   569  
   570  x0 = HermiteInitialGuesses(n);
   571  x0 = x0.*sqrt(2);
   572  
   573  for kk = 1:10
   574      [val, dval] = hermpoly_rec(n, x0);
   575      dx = val./dval;
   576      dx(isnan(dx)) = 0;
   577      x0 = x0 - dx;
   578      if norm(dx, inf)<sqrt(eps), break; end
   579  end
   580  x = x0/sqrt(2);
   581  w = (exp(-x.^2)./dval.^2)';            % quadrature weights
   582  v = exp(-x.^2/2)./dval;               % Barycentric weights
   583  
   584  if mod(n,2) == 1                              % fold out
   585      x = [-x(end:-1:1);x(2:end)];
   586      w = [w(end:-1:1) w(2:end)]; w = (sqrt(pi)/sum(w))*w;
   587      v = [v(end:-1:1);v(2:end)]; v = v./max(abs(v));
   588  else
   589      x = [-x(end:-1:1);x];
   590      w = [w(end:-1:1) w]; w = (sqrt(pi)/sum(w))*w;
   591      v = [v(end:-1:1);-v]; v = v./max(abs(v));
   592  end
   593  
   594  
   595  end
   596  
   597  function [val, dval] = hermpoly_rec(n, x0)
   598  % HERMPOLY_rec evaluation of scaled Hermite poly using recurrence
   599  
   600  % evaluate:
   601  Hold = exp(-x0.^2/4); H = x0.*exp(-x0.^2/4);
   602  for k = 1:n-1
   603      Hnew = (x0.*H./sqrt(k+1) - Hold./sqrt(1+1/k));
   604      Hold = H; H = Hnew;
   605  end
   606  % evaluate derivative:
   607  val = Hnew;
   608  dval = (-x0.*Hnew + n^(1/2)*Hold);
   609  end