gonum.org/v1/gonum@v0.14.0/internal/asm/c128/axpyunitary_amd64.s (about) 1 // Copyright ©2016 The Gonum Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // +build !noasm,!gccgo,!safe 6 7 #include "textflag.h" 8 9 // MOVDDUP X2, X3 10 #define MOVDDUP_X2_X3 BYTE $0xF2; BYTE $0x0F; BYTE $0x12; BYTE $0xDA 11 // MOVDDUP X4, X5 12 #define MOVDDUP_X4_X5 BYTE $0xF2; BYTE $0x0F; BYTE $0x12; BYTE $0xEC 13 // MOVDDUP X6, X7 14 #define MOVDDUP_X6_X7 BYTE $0xF2; BYTE $0x0F; BYTE $0x12; BYTE $0xFE 15 // MOVDDUP X8, X9 16 #define MOVDDUP_X8_X9 BYTE $0xF2; BYTE $0x45; BYTE $0x0F; BYTE $0x12; BYTE $0xC8 17 18 // ADDSUBPD X2, X3 19 #define ADDSUBPD_X2_X3 BYTE $0x66; BYTE $0x0F; BYTE $0xD0; BYTE $0xDA 20 // ADDSUBPD X4, X5 21 #define ADDSUBPD_X4_X5 BYTE $0x66; BYTE $0x0F; BYTE $0xD0; BYTE $0xEC 22 // ADDSUBPD X6, X7 23 #define ADDSUBPD_X6_X7 BYTE $0x66; BYTE $0x0F; BYTE $0xD0; BYTE $0xFE 24 // ADDSUBPD X8, X9 25 #define ADDSUBPD_X8_X9 BYTE $0x66; BYTE $0x45; BYTE $0x0F; BYTE $0xD0; BYTE $0xC8 26 27 // func AxpyUnitary(alpha complex128, x, y []complex128) 28 TEXT ·AxpyUnitary(SB), NOSPLIT, $0 29 MOVQ x_base+16(FP), SI // SI = &x 30 MOVQ y_base+40(FP), DI // DI = &y 31 MOVQ x_len+24(FP), CX // CX = min( len(x), len(y) ) 32 CMPQ y_len+48(FP), CX 33 CMOVQLE y_len+48(FP), CX 34 CMPQ CX, $0 // if CX == 0 { return } 35 JE caxy_end 36 PXOR X0, X0 // Clear work registers and cache-align loop 37 PXOR X1, X1 38 MOVUPS alpha+0(FP), X0 // X0 = { imag(a), real(a) } 39 MOVAPS X0, X1 40 SHUFPD $0x1, X1, X1 // X1 = { real(a), imag(a) } 41 XORQ AX, AX // i = 0 42 MOVAPS X0, X10 // Copy X0 and X1 for pipelining 43 MOVAPS X1, X11 44 MOVQ CX, BX 45 ANDQ $3, CX // CX = n % 4 46 SHRQ $2, BX // BX = floor( n / 4 ) 47 JZ caxy_tail // if BX == 0 { goto caxy_tail } 48 49 caxy_loop: // do { 50 MOVUPS (SI)(AX*8), X2 // X_i = { imag(x[i]), real(x[i]) } 51 MOVUPS 16(SI)(AX*8), X4 52 MOVUPS 32(SI)(AX*8), X6 53 MOVUPS 48(SI)(AX*8), X8 54 55 // X_(i+1) = { real(x[i], real(x[i]) } 56 MOVDDUP_X2_X3 57 MOVDDUP_X4_X5 58 MOVDDUP_X6_X7 59 MOVDDUP_X8_X9 60 61 // X_i = { imag(x[i]), imag(x[i]) } 62 SHUFPD $0x3, X2, X2 63 SHUFPD $0x3, X4, X4 64 SHUFPD $0x3, X6, X6 65 SHUFPD $0x3, X8, X8 66 67 // X_i = { real(a) * imag(x[i]), imag(a) * imag(x[i]) } 68 // X_(i+1) = { imag(a) * real(x[i]), real(a) * real(x[i]) } 69 MULPD X1, X2 70 MULPD X0, X3 71 MULPD X11, X4 72 MULPD X10, X5 73 MULPD X1, X6 74 MULPD X0, X7 75 MULPD X11, X8 76 MULPD X10, X9 77 78 // X_(i+1) = { 79 // imag(result[i]): imag(a)*real(x[i]) + real(a)*imag(x[i]), 80 // real(result[i]): real(a)*real(x[i]) - imag(a)*imag(x[i]) 81 // } 82 ADDSUBPD_X2_X3 83 ADDSUBPD_X4_X5 84 ADDSUBPD_X6_X7 85 ADDSUBPD_X8_X9 86 87 // X_(i+1) = { imag(result[i]) + imag(y[i]), real(result[i]) + real(y[i]) } 88 ADDPD (DI)(AX*8), X3 89 ADDPD 16(DI)(AX*8), X5 90 ADDPD 32(DI)(AX*8), X7 91 ADDPD 48(DI)(AX*8), X9 92 MOVUPS X3, (DI)(AX*8) // y[i] = X_(i+1) 93 MOVUPS X5, 16(DI)(AX*8) 94 MOVUPS X7, 32(DI)(AX*8) 95 MOVUPS X9, 48(DI)(AX*8) 96 ADDQ $8, AX // i += 8 97 DECQ BX 98 JNZ caxy_loop // } while --BX > 0 99 CMPQ CX, $0 // if CX == 0 { return } 100 JE caxy_end 101 102 caxy_tail: // do { 103 MOVUPS (SI)(AX*8), X2 // X_i = { imag(x[i]), real(x[i]) } 104 MOVDDUP_X2_X3 // X_(i+1) = { real(x[i], real(x[i]) } 105 SHUFPD $0x3, X2, X2 // X_i = { imag(x[i]), imag(x[i]) } 106 MULPD X1, X2 // X_i = { real(a) * imag(x[i]), imag(a) * imag(x[i]) } 107 MULPD X0, X3 // X_(i+1) = { imag(a) * real(x[i]), real(a) * real(x[i]) } 108 109 // X_(i+1) = { 110 // imag(result[i]): imag(a)*real(x[i]) + real(a)*imag(x[i]), 111 // real(result[i]): real(a)*real(x[i]) - imag(a)*imag(x[i]) 112 // } 113 ADDSUBPD_X2_X3 114 115 // X_(i+1) = { imag(result[i]) + imag(y[i]), real(result[i]) + real(y[i]) } 116 ADDPD (DI)(AX*8), X3 117 MOVUPS X3, (DI)(AX*8) // y[i] = X_(i+1) 118 ADDQ $2, AX // i += 2 119 LOOP caxy_tail // } while --CX > 0 120 121 caxy_end: 122 RET