gonum.org/v1/gonum@v0.14.0/internal/math32/math_test.go (about)

     1  // Copyright ©2015 The Gonum Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package math32
     6  
     7  import (
     8  	"math"
     9  	"testing"
    10  	"testing/quick"
    11  
    12  	"gonum.org/v1/gonum/floats/scalar"
    13  )
    14  
    15  const tol = 1e-7
    16  
    17  func TestAbs(t *testing.T) {
    18  	f := func(x float32) bool {
    19  		y := Abs(x)
    20  		return y == float32(math.Abs(float64(x)))
    21  	}
    22  	if err := quick.Check(f, nil); err != nil {
    23  		t.Error(err)
    24  	}
    25  }
    26  
    27  func TestCopySign(t *testing.T) {
    28  	f := func(x struct{ X, Y float32 }) bool {
    29  		y := Copysign(x.X, x.Y)
    30  		return y == float32(math.Copysign(float64(x.X), float64(x.Y)))
    31  	}
    32  	if err := quick.Check(f, nil); err != nil {
    33  		t.Error(err)
    34  	}
    35  }
    36  
    37  func TestHypot(t *testing.T) {
    38  	// tol is increased for Hypot to avoid failures
    39  	// related to https://github.com/gonum/gonum/issues/110.
    40  	const tol = 1e-6
    41  	f := func(x struct{ X, Y float32 }) bool {
    42  		y := Hypot(x.X, x.Y)
    43  		if math.Hypot(float64(x.X), float64(x.Y)) > math.MaxFloat32 {
    44  			return true
    45  		}
    46  		return scalar.EqualWithinRel(float64(y), math.Hypot(float64(x.X), float64(x.Y)), tol)
    47  	}
    48  	if err := quick.Check(f, nil); err != nil {
    49  		t.Error(err)
    50  	}
    51  }
    52  
    53  func TestInf(t *testing.T) {
    54  	if float64(Inf(1)) != math.Inf(1) || float64(Inf(-1)) != math.Inf(-1) {
    55  		t.Error("float32(inf) not infinite")
    56  	}
    57  }
    58  
    59  func TestIsInf(t *testing.T) {
    60  	posInf := float32(math.Inf(1))
    61  	negInf := float32(math.Inf(-1))
    62  	if !IsInf(posInf, 0) || !IsInf(negInf, 0) || !IsInf(posInf, 1) || !IsInf(negInf, -1) || IsInf(posInf, -1) || IsInf(negInf, 1) {
    63  		t.Error("unexpected isInf value")
    64  	}
    65  	f := func(x struct {
    66  		F    float32
    67  		Sign int
    68  	}) bool {
    69  		y := IsInf(x.F, x.Sign)
    70  		return y == math.IsInf(float64(x.F), x.Sign)
    71  	}
    72  	if err := quick.Check(f, nil); err != nil {
    73  		t.Error(err)
    74  	}
    75  }
    76  
    77  func TestIsNaN(t *testing.T) {
    78  	f := func(x float32) bool {
    79  		y := IsNaN(x)
    80  		return y == math.IsNaN(float64(x))
    81  	}
    82  	if err := quick.Check(f, nil); err != nil {
    83  		t.Error(err)
    84  	}
    85  }
    86  
    87  func TestMax(t *testing.T) {
    88  	values := []float32{
    89  		Inf(-1),
    90  		-12.34,
    91  		-1,
    92  		Copysign(0, -1),
    93  		0,
    94  		1,
    95  		12.34,
    96  		Inf(1),
    97  		NaN(),
    98  	}
    99  	for _, v1 := range values {
   100  		for _, v2 := range values {
   101  			got := Max(v1, v2)
   102  			want := float32(math.Max(float64(v1), float64(v2)))
   103  			if !alike(got, want) {
   104  				t.Errorf("Max(%v, %v) = %v, want %v", v1, v2, got, want)
   105  			}
   106  		}
   107  	}
   108  }
   109  
   110  func TestMin(t *testing.T) {
   111  	values := []float32{
   112  		Inf(-1),
   113  		-12.34,
   114  		-1,
   115  		Copysign(0, -1),
   116  		0,
   117  		1,
   118  		12.34,
   119  		Inf(1),
   120  		NaN(),
   121  	}
   122  	for _, v1 := range values {
   123  		for _, v2 := range values {
   124  			got := Min(v1, v2)
   125  			want := float32(math.Min(float64(v1), float64(v2)))
   126  			if !alike(got, want) {
   127  				t.Errorf("Min(%v, %v) = %v, want %v", v1, v2, got, want)
   128  			}
   129  		}
   130  	}
   131  }
   132  
   133  func TestNaN(t *testing.T) {
   134  	if !math.IsNaN(float64(NaN())) {
   135  		t.Errorf("float32(nan) is a number: %f", NaN())
   136  	}
   137  }
   138  
   139  func TestSignbit(t *testing.T) {
   140  	f := func(x float32) bool {
   141  		return Signbit(x) == math.Signbit(float64(x))
   142  	}
   143  	if err := quick.Check(f, nil); err != nil {
   144  		t.Error(err)
   145  	}
   146  }
   147  
   148  func TestSqrt(t *testing.T) {
   149  	f := func(x float32) bool {
   150  		y := Sqrt(x)
   151  		if IsNaN(y) && IsNaN(sqrt(x)) {
   152  			return true
   153  		}
   154  		return scalar.EqualWithinRel(float64(y), float64(sqrt(x)), tol)
   155  	}
   156  	if err := quick.Check(f, nil); err != nil {
   157  		t.Error(err)
   158  	}
   159  }
   160  
   161  // Copyright 2009 The Go Authors. All rights reserved.
   162  // Use of this source code is governed by a BSD-style
   163  // license that can be found in the LICENSE file.
   164  
   165  // The original C code and the long comment below are
   166  // from FreeBSD's /usr/src/lib/msun/src/e_sqrt.c and
   167  // came with this notice.  The go code is a simplified
   168  // version of the original C.
   169  //
   170  // ====================================================
   171  // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
   172  //
   173  // Developed at SunPro, a Sun Microsystems, Inc. business.
   174  // Permission to use, copy, modify, and distribute this
   175  // software is freely granted, provided that this notice
   176  // is preserved.
   177  // ====================================================
   178  //
   179  // __ieee754_sqrt(x)
   180  // Return correctly rounded sqrt.
   181  //
   182  //	-----------------------------------------
   183  //	| Use the hardware sqrt if you have one |
   184  //	-----------------------------------------
   185  //
   186  // Method:
   187  //
   188  //	Bit by bit method using integer arithmetic. (Slow, but portable)
   189  //	1. Normalization
   190  //	   Scale x to y in [1,4) with even powers of 2:
   191  //	   find an integer k such that  1 <= (y=x*2**(2k)) < 4, then
   192  //	           sqrt(x) = 2**k * sqrt(y)
   193  //	2. Bit by bit computation
   194  //	   Let q  = sqrt(y) truncated to i bit after binary point (q = 1),
   195  //	        i                                                   0
   196  //	                                  i+1         2
   197  //	       s  = 2*q , and      y  =  2   * ( y - q  ).          (1)
   198  //	        i      i            i                 i
   199  //
   200  //	   To compute q    from q , one checks whether
   201  //	               i+1       i
   202  //
   203  //	                         -(i+1) 2
   204  //	                   (q + 2      )  <= y.                     (2)
   205  //	                     i
   206  //	                                                         -(i+1)
   207  //	   If (2) is false, then q   = q ; otherwise q   = q  + 2      .
   208  //	                          i+1   i             i+1   i
   209  //
   210  //	   With some algebraic manipulation, it is not difficult to see
   211  //	   that (2) is equivalent to
   212  //	                          -(i+1)
   213  //	                   s  +  2       <= y                       (3)
   214  //	                    i                i
   215  //
   216  //	   The advantage of (3) is that s  and y  can be computed by
   217  //	                                 i      i
   218  //	   the following recurrence formula:
   219  //	       if (3) is false
   220  //
   221  //	       s     =  s  ,       y    = y   ;                     (4)
   222  //	        i+1      i          i+1    i
   223  //
   224  //	   otherwise,
   225  //	                      -i                      -(i+1)
   226  //	       s     =  s  + 2  ,  y    = y  -  s  - 2              (5)
   227  //	        i+1      i          i+1    i     i
   228  //
   229  //	   One may easily use induction to prove (4) and (5).
   230  //	   Note. Since the left hand side of (3) contain only i+2 bits,
   231  //	         it does not necessary to do a full (53-bit) comparison
   232  //	         in (3).
   233  //	3. Final rounding
   234  //	   After generating the 53 bits result, we compute one more bit.
   235  //	   Together with the remainder, we can decide whether the
   236  //	   result is exact, bigger than 1/2ulp, or less than 1/2ulp
   237  //	   (it will never equal to 1/2ulp).
   238  //	   The rounding mode can be detected by checking whether
   239  //	   huge + tiny is equal to huge, and whether huge - tiny is
   240  //	   equal to huge for some floating point number "huge" and "tiny".
   241  func sqrt(x float32) float32 {
   242  	// special cases
   243  	switch {
   244  	case x == 0 || IsNaN(x) || IsInf(x, 1):
   245  		return x
   246  	case x < 0:
   247  		return NaN()
   248  	}
   249  	ix := math.Float32bits(x)
   250  	// normalize x
   251  	exp := int((ix >> shift) & mask)
   252  	if exp == 0 { // subnormal x
   253  		for ix&1<<shift == 0 {
   254  			ix <<= 1
   255  			exp--
   256  		}
   257  		exp++
   258  	}
   259  	exp -= bias // unbias exponent
   260  	ix &^= mask << shift
   261  	ix |= 1 << shift
   262  	if exp&1 == 1 { // odd exp, double x to make it even
   263  		ix <<= 1
   264  	}
   265  	exp >>= 1 // exp = exp/2, exponent of square root
   266  	// generate sqrt(x) bit by bit
   267  	ix <<= 1
   268  	var q, s uint32               // q = sqrt(x)
   269  	r := uint32(1 << (shift + 1)) // r = moving bit from MSB to LSB
   270  	for r != 0 {
   271  		t := s + r
   272  		if t <= ix {
   273  			s = t + r
   274  			ix -= t
   275  			q += r
   276  		}
   277  		ix <<= 1
   278  		r >>= 1
   279  	}
   280  	// final rounding
   281  	if ix != 0 { // remainder, result not exact
   282  		q += q & 1 // round according to extra bit
   283  	}
   284  	ix = q>>1 + uint32(exp-1+bias)<<shift // significand + biased exponent
   285  	return math.Float32frombits(ix)
   286  }
   287  
   288  func alike(a, b float32) bool {
   289  	switch {
   290  	case IsNaN(a) && IsNaN(b):
   291  		return true
   292  	case a == b:
   293  		return Signbit(a) == Signbit(b)
   294  	}
   295  	return false
   296  }