gonum.org/v1/gonum@v0.14.0/lapack/gonum/dgeqp3.go (about)

     1  // Copyright ©2017 The Gonum Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package gonum
     6  
     7  import (
     8  	"gonum.org/v1/gonum/blas"
     9  	"gonum.org/v1/gonum/blas/blas64"
    10  )
    11  
    12  // Dgeqp3 computes a QR factorization with column pivoting of the
    13  // m×n matrix A: A*P = Q*R using Level 3 BLAS.
    14  //
    15  // The matrix Q is represented as a product of elementary reflectors
    16  //
    17  //	Q = H_0 H_1 . . . H_{k-1}, where k = min(m,n).
    18  //
    19  // Each H_i has the form
    20  //
    21  //	H_i = I - tau * v * vᵀ
    22  //
    23  // where tau and v are real vectors with v[0:i-1] = 0 and v[i] = 1;
    24  // v[i:m] is stored on exit in A[i:m, i], and tau in tau[i].
    25  //
    26  // jpvt specifies a column pivot to be applied to A. If
    27  // jpvt[j] is at least zero, the jth column of A is permuted
    28  // to the front of A*P (a leading column), if jpvt[j] is -1
    29  // the jth column of A is a free column. If jpvt[j] < -1, Dgeqp3
    30  // will panic. On return, jpvt holds the permutation that was
    31  // applied; the jth column of A*P was the jpvt[j] column of A.
    32  // jpvt must have length n or Dgeqp3 will panic.
    33  //
    34  // tau holds the scalar factors of the elementary reflectors.
    35  // It must have length min(m, n), otherwise Dgeqp3 will panic.
    36  //
    37  // work must have length at least max(1,lwork), and lwork must be at least
    38  // 3*n+1, otherwise Dgeqp3 will panic. For optimal performance lwork must
    39  // be at least 2*n+(n+1)*nb, where nb is the optimal blocksize. On return,
    40  // work[0] will contain the optimal value of lwork.
    41  //
    42  // If lwork == -1, instead of performing Dgeqp3, only the optimal value of lwork
    43  // will be stored in work[0].
    44  //
    45  // Dgeqp3 is an internal routine. It is exported for testing purposes.
    46  func (impl Implementation) Dgeqp3(m, n int, a []float64, lda int, jpvt []int, tau, work []float64, lwork int) {
    47  	const (
    48  		inb    = 1
    49  		inbmin = 2
    50  		ixover = 3
    51  	)
    52  
    53  	minmn := min(m, n)
    54  	iws := 3*n + 1
    55  	if minmn == 0 {
    56  		iws = 1
    57  	}
    58  	switch {
    59  	case m < 0:
    60  		panic(mLT0)
    61  	case n < 0:
    62  		panic(nLT0)
    63  	case lda < max(1, n):
    64  		panic(badLdA)
    65  	case lwork < iws && lwork != -1:
    66  		panic(badLWork)
    67  	case len(work) < max(1, lwork):
    68  		panic(shortWork)
    69  	}
    70  
    71  	// Quick return if possible.
    72  	if minmn == 0 {
    73  		work[0] = 1
    74  		return
    75  	}
    76  
    77  	nb := impl.Ilaenv(inb, "DGEQRF", " ", m, n, -1, -1)
    78  	if lwork == -1 {
    79  		work[0] = float64(2*n + (n+1)*nb)
    80  		return
    81  	}
    82  
    83  	switch {
    84  	case len(a) < (m-1)*lda+n:
    85  		panic(shortA)
    86  	case len(jpvt) != n:
    87  		panic(badLenJpvt)
    88  	case len(tau) < minmn:
    89  		panic(shortTau)
    90  	}
    91  
    92  	for _, v := range jpvt {
    93  		if v < -1 || n <= v {
    94  			panic(badJpvt)
    95  		}
    96  	}
    97  
    98  	bi := blas64.Implementation()
    99  
   100  	// Move initial columns up front.
   101  	var nfxd int
   102  	for j := 0; j < n; j++ {
   103  		if jpvt[j] == -1 {
   104  			jpvt[j] = j
   105  			continue
   106  		}
   107  		if j != nfxd {
   108  			bi.Dswap(m, a[j:], lda, a[nfxd:], lda)
   109  			jpvt[j], jpvt[nfxd] = jpvt[nfxd], j
   110  		} else {
   111  			jpvt[j] = j
   112  		}
   113  		nfxd++
   114  	}
   115  
   116  	// Factorize nfxd columns.
   117  	//
   118  	// Compute the QR factorization of nfxd columns and update remaining columns.
   119  	if nfxd > 0 {
   120  		na := min(m, nfxd)
   121  		impl.Dgeqrf(m, na, a, lda, tau, work, lwork)
   122  		iws = max(iws, int(work[0]))
   123  		if na < n {
   124  			impl.Dormqr(blas.Left, blas.Trans, m, n-na, na, a, lda, tau[:na], a[na:], lda,
   125  				work, lwork)
   126  			iws = max(iws, int(work[0]))
   127  		}
   128  	}
   129  
   130  	if nfxd >= minmn {
   131  		work[0] = float64(iws)
   132  		return
   133  	}
   134  
   135  	// Factorize free columns.
   136  	sm := m - nfxd
   137  	sn := n - nfxd
   138  	sminmn := minmn - nfxd
   139  
   140  	// Determine the block size.
   141  	nb = impl.Ilaenv(inb, "DGEQRF", " ", sm, sn, -1, -1)
   142  	nbmin := 2
   143  	nx := 0
   144  
   145  	if 1 < nb && nb < sminmn {
   146  		// Determine when to cross over from blocked to unblocked code.
   147  		nx = max(0, impl.Ilaenv(ixover, "DGEQRF", " ", sm, sn, -1, -1))
   148  
   149  		if nx < sminmn {
   150  			// Determine if workspace is large enough for blocked code.
   151  			minws := 2*sn + (sn+1)*nb
   152  			iws = max(iws, minws)
   153  			if lwork < minws {
   154  				// Not enough workspace to use optimal nb. Reduce
   155  				// nb and determine the minimum value of nb.
   156  				nb = (lwork - 2*sn) / (sn + 1)
   157  				nbmin = max(2, impl.Ilaenv(inbmin, "DGEQRF", " ", sm, sn, -1, -1))
   158  			}
   159  		}
   160  	}
   161  
   162  	// Initialize partial column norms.
   163  	// The first n elements of work store the exact column norms.
   164  	for j := nfxd; j < n; j++ {
   165  		work[j] = bi.Dnrm2(sm, a[nfxd*lda+j:], lda)
   166  		work[n+j] = work[j]
   167  	}
   168  	j := nfxd
   169  	if nbmin <= nb && nb < sminmn && nx < sminmn {
   170  		// Use blocked code initially.
   171  
   172  		// Compute factorization.
   173  		var fjb int
   174  		for topbmn := minmn - nx; j < topbmn; j += fjb {
   175  			jb := min(nb, topbmn-j)
   176  
   177  			// Factorize jb columns among columns j:n.
   178  			fjb = impl.Dlaqps(m, n-j, j, jb, a[j:], lda, jpvt[j:], tau[j:],
   179  				work[j:n], work[j+n:2*n], work[2*n:2*n+jb], work[2*n+jb:], jb)
   180  		}
   181  	}
   182  
   183  	// Use unblocked code to factor the last or only block.
   184  	if j < minmn {
   185  		impl.Dlaqp2(m, n-j, j, a[j:], lda, jpvt[j:], tau[j:],
   186  			work[j:n], work[j+n:2*n], work[2*n:])
   187  	}
   188  
   189  	work[0] = float64(iws)
   190  }