gonum.org/v1/gonum@v0.14.0/lapack/gonum/dgeqr2.go (about) 1 // Copyright ©2015 The Gonum Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package gonum 6 7 import "gonum.org/v1/gonum/blas" 8 9 // Dgeqr2 computes a QR factorization of the m×n matrix A. 10 // 11 // In a QR factorization, Q is an m×m orthonormal matrix, and R is an 12 // upper triangular m×n matrix. 13 // 14 // A is modified to contain the information to construct Q and R. 15 // The upper triangle of a contains the matrix R. The lower triangular elements 16 // (not including the diagonal) contain the elementary reflectors. tau is modified 17 // to contain the reflector scales. tau must have length at least min(m,n), and 18 // this function will panic otherwise. 19 // 20 // The ith elementary reflector can be explicitly constructed by first extracting 21 // the 22 // 23 // v[j] = 0 j < i 24 // v[j] = 1 j == i 25 // v[j] = a[j*lda+i] j > i 26 // 27 // and computing H_i = I - tau[i] * v * vᵀ. 28 // 29 // The orthonormal matrix Q can be constructed from a product of these elementary 30 // reflectors, Q = H_0 * H_1 * ... * H_{k-1}, where k = min(m,n). 31 // 32 // work is temporary storage of length at least n and this function will panic otherwise. 33 // 34 // Dgeqr2 is an internal routine. It is exported for testing purposes. 35 func (impl Implementation) Dgeqr2(m, n int, a []float64, lda int, tau, work []float64) { 36 // TODO(btracey): This is oriented such that columns of a are eliminated. 37 // This likely could be re-arranged to take better advantage of row-major 38 // storage. 39 40 switch { 41 case m < 0: 42 panic(mLT0) 43 case n < 0: 44 panic(nLT0) 45 case lda < max(1, n): 46 panic(badLdA) 47 case len(work) < n: 48 panic(shortWork) 49 } 50 51 // Quick return if possible. 52 k := min(m, n) 53 if k == 0 { 54 return 55 } 56 57 switch { 58 case len(a) < (m-1)*lda+n: 59 panic(shortA) 60 case len(tau) < k: 61 panic(shortTau) 62 } 63 64 for i := 0; i < k; i++ { 65 // Generate elementary reflector H_i. 66 a[i*lda+i], tau[i] = impl.Dlarfg(m-i, a[i*lda+i], a[min((i+1), m-1)*lda+i:], lda) 67 if i < n-1 { 68 aii := a[i*lda+i] 69 a[i*lda+i] = 1 70 impl.Dlarf(blas.Left, m-i, n-i-1, 71 a[i*lda+i:], lda, 72 tau[i], 73 a[i*lda+i+1:], lda, 74 work) 75 a[i*lda+i] = aii 76 } 77 } 78 }