gonum.org/v1/gonum@v0.14.0/lapack/gonum/dgetrs.go (about) 1 // Copyright ©2015 The Gonum Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package gonum 6 7 import ( 8 "gonum.org/v1/gonum/blas" 9 "gonum.org/v1/gonum/blas/blas64" 10 ) 11 12 // Dgetrs solves a system of equations using an LU factorization. 13 // The system of equations solved is 14 // 15 // A * X = B if trans == blas.Trans 16 // Aᵀ * X = B if trans == blas.NoTrans 17 // 18 // A is a general n×n matrix with stride lda. B is a general matrix of size n×nrhs. 19 // 20 // On entry b contains the elements of the matrix B. On exit, b contains the 21 // elements of X, the solution to the system of equations. 22 // 23 // a and ipiv contain the LU factorization of A and the permutation indices as 24 // computed by Dgetrf. ipiv is zero-indexed. 25 func (impl Implementation) Dgetrs(trans blas.Transpose, n, nrhs int, a []float64, lda int, ipiv []int, b []float64, ldb int) { 26 switch { 27 case trans != blas.NoTrans && trans != blas.Trans && trans != blas.ConjTrans: 28 panic(badTrans) 29 case n < 0: 30 panic(nLT0) 31 case nrhs < 0: 32 panic(nrhsLT0) 33 case lda < max(1, n): 34 panic(badLdA) 35 case ldb < max(1, nrhs): 36 panic(badLdB) 37 } 38 39 // Quick return if possible. 40 if n == 0 || nrhs == 0 { 41 return 42 } 43 44 switch { 45 case len(a) < (n-1)*lda+n: 46 panic(shortA) 47 case len(b) < (n-1)*ldb+nrhs: 48 panic(shortB) 49 case len(ipiv) != n: 50 panic(badLenIpiv) 51 } 52 53 bi := blas64.Implementation() 54 55 if trans == blas.NoTrans { 56 // Solve A * X = B. 57 impl.Dlaswp(nrhs, b, ldb, 0, n-1, ipiv, 1) 58 // Solve L * X = B, updating b. 59 bi.Dtrsm(blas.Left, blas.Lower, blas.NoTrans, blas.Unit, 60 n, nrhs, 1, a, lda, b, ldb) 61 // Solve U * X = B, updating b. 62 bi.Dtrsm(blas.Left, blas.Upper, blas.NoTrans, blas.NonUnit, 63 n, nrhs, 1, a, lda, b, ldb) 64 return 65 } 66 // Solve Aᵀ * X = B. 67 // Solve Uᵀ * X = B, updating b. 68 bi.Dtrsm(blas.Left, blas.Upper, blas.Trans, blas.NonUnit, 69 n, nrhs, 1, a, lda, b, ldb) 70 // Solve Lᵀ * X = B, updating b. 71 bi.Dtrsm(blas.Left, blas.Lower, blas.Trans, blas.Unit, 72 n, nrhs, 1, a, lda, b, ldb) 73 impl.Dlaswp(nrhs, b, ldb, 0, n-1, ipiv, -1) 74 }