gonum.org/v1/gonum@v0.14.0/lapack/gonum/dlabrd.go (about) 1 // Copyright ©2015 The Gonum Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package gonum 6 7 import ( 8 "gonum.org/v1/gonum/blas" 9 "gonum.org/v1/gonum/blas/blas64" 10 ) 11 12 // Dlabrd reduces the first NB rows and columns of a real general m×n matrix 13 // A to upper or lower bidiagonal form by an orthogonal transformation 14 // 15 // Q**T * A * P 16 // 17 // If m >= n, A is reduced to upper bidiagonal form and upon exit the elements 18 // on and below the diagonal in the first nb columns represent the elementary 19 // reflectors, and the elements above the diagonal in the first nb rows represent 20 // the matrix P. If m < n, A is reduced to lower bidiagonal form and the elements 21 // P is instead stored above the diagonal. 22 // 23 // The reduction to bidiagonal form is stored in d and e, where d are the diagonal 24 // elements, and e are the off-diagonal elements. 25 // 26 // The matrices Q and P are products of elementary reflectors 27 // 28 // Q = H_0 * H_1 * ... * H_{nb-1} 29 // P = G_0 * G_1 * ... * G_{nb-1} 30 // 31 // where 32 // 33 // H_i = I - tauQ[i] * v_i * v_iᵀ 34 // G_i = I - tauP[i] * u_i * u_iᵀ 35 // 36 // As an example, on exit the entries of A when m = 6, n = 5, and nb = 2 37 // 38 // [ 1 1 u1 u1 u1] 39 // [v1 1 1 u2 u2] 40 // [v1 v2 a a a] 41 // [v1 v2 a a a] 42 // [v1 v2 a a a] 43 // [v1 v2 a a a] 44 // 45 // and when m = 5, n = 6, and nb = 2 46 // 47 // [ 1 u1 u1 u1 u1 u1] 48 // [ 1 1 u2 u2 u2 u2] 49 // [v1 1 a a a a] 50 // [v1 v2 a a a a] 51 // [v1 v2 a a a a] 52 // 53 // Dlabrd also returns the matrices X and Y which are used with U and V to 54 // apply the transformation to the unreduced part of the matrix 55 // 56 // A := A - V*Yᵀ - X*Uᵀ 57 // 58 // and returns the matrices X and Y which are needed to apply the 59 // transformation to the unreduced part of A. 60 // 61 // X is an m×nb matrix, Y is an n×nb matrix. d, e, taup, and tauq must all have 62 // length at least nb. Dlabrd will panic if these size constraints are violated. 63 // 64 // Dlabrd is an internal routine. It is exported for testing purposes. 65 func (impl Implementation) Dlabrd(m, n, nb int, a []float64, lda int, d, e, tauQ, tauP, x []float64, ldx int, y []float64, ldy int) { 66 switch { 67 case m < 0: 68 panic(mLT0) 69 case n < 0: 70 panic(nLT0) 71 case nb < 0: 72 panic(nbLT0) 73 case nb > n: 74 panic(nbGTN) 75 case nb > m: 76 panic(nbGTM) 77 case lda < max(1, n): 78 panic(badLdA) 79 case ldx < max(1, nb): 80 panic(badLdX) 81 case ldy < max(1, nb): 82 panic(badLdY) 83 } 84 85 if m == 0 || n == 0 || nb == 0 { 86 return 87 } 88 89 switch { 90 case len(a) < (m-1)*lda+n: 91 panic(shortA) 92 case len(d) < nb: 93 panic(shortD) 94 case len(e) < nb: 95 panic(shortE) 96 case len(tauQ) < nb: 97 panic(shortTauQ) 98 case len(tauP) < nb: 99 panic(shortTauP) 100 case len(x) < (m-1)*ldx+nb: 101 panic(shortX) 102 case len(y) < (n-1)*ldy+nb: 103 panic(shortY) 104 } 105 106 bi := blas64.Implementation() 107 108 if m >= n { 109 // Reduce to upper bidiagonal form. 110 for i := 0; i < nb; i++ { 111 bi.Dgemv(blas.NoTrans, m-i, i, -1, a[i*lda:], lda, y[i*ldy:], 1, 1, a[i*lda+i:], lda) 112 bi.Dgemv(blas.NoTrans, m-i, i, -1, x[i*ldx:], ldx, a[i:], lda, 1, a[i*lda+i:], lda) 113 114 a[i*lda+i], tauQ[i] = impl.Dlarfg(m-i, a[i*lda+i], a[min(i+1, m-1)*lda+i:], lda) 115 d[i] = a[i*lda+i] 116 if i < n-1 { 117 // Compute Y[i+1:n, i]. 118 a[i*lda+i] = 1 119 bi.Dgemv(blas.Trans, m-i, n-i-1, 1, a[i*lda+i+1:], lda, a[i*lda+i:], lda, 0, y[(i+1)*ldy+i:], ldy) 120 bi.Dgemv(blas.Trans, m-i, i, 1, a[i*lda:], lda, a[i*lda+i:], lda, 0, y[i:], ldy) 121 bi.Dgemv(blas.NoTrans, n-i-1, i, -1, y[(i+1)*ldy:], ldy, y[i:], ldy, 1, y[(i+1)*ldy+i:], ldy) 122 bi.Dgemv(blas.Trans, m-i, i, 1, x[i*ldx:], ldx, a[i*lda+i:], lda, 0, y[i:], ldy) 123 bi.Dgemv(blas.Trans, i, n-i-1, -1, a[i+1:], lda, y[i:], ldy, 1, y[(i+1)*ldy+i:], ldy) 124 bi.Dscal(n-i-1, tauQ[i], y[(i+1)*ldy+i:], ldy) 125 126 // Update A[i, i+1:n]. 127 bi.Dgemv(blas.NoTrans, n-i-1, i+1, -1, y[(i+1)*ldy:], ldy, a[i*lda:], 1, 1, a[i*lda+i+1:], 1) 128 bi.Dgemv(blas.Trans, i, n-i-1, -1, a[i+1:], lda, x[i*ldx:], 1, 1, a[i*lda+i+1:], 1) 129 130 // Generate reflection P[i] to annihilate A[i, i+2:n]. 131 a[i*lda+i+1], tauP[i] = impl.Dlarfg(n-i-1, a[i*lda+i+1], a[i*lda+min(i+2, n-1):], 1) 132 e[i] = a[i*lda+i+1] 133 a[i*lda+i+1] = 1 134 135 // Compute X[i+1:m, i]. 136 bi.Dgemv(blas.NoTrans, m-i-1, n-i-1, 1, a[(i+1)*lda+i+1:], lda, a[i*lda+i+1:], 1, 0, x[(i+1)*ldx+i:], ldx) 137 bi.Dgemv(blas.Trans, n-i-1, i+1, 1, y[(i+1)*ldy:], ldy, a[i*lda+i+1:], 1, 0, x[i:], ldx) 138 bi.Dgemv(blas.NoTrans, m-i-1, i+1, -1, a[(i+1)*lda:], lda, x[i:], ldx, 1, x[(i+1)*ldx+i:], ldx) 139 bi.Dgemv(blas.NoTrans, i, n-i-1, 1, a[i+1:], lda, a[i*lda+i+1:], 1, 0, x[i:], ldx) 140 bi.Dgemv(blas.NoTrans, m-i-1, i, -1, x[(i+1)*ldx:], ldx, x[i:], ldx, 1, x[(i+1)*ldx+i:], ldx) 141 bi.Dscal(m-i-1, tauP[i], x[(i+1)*ldx+i:], ldx) 142 } 143 } 144 return 145 } 146 // Reduce to lower bidiagonal form. 147 for i := 0; i < nb; i++ { 148 // Update A[i,i:n] 149 bi.Dgemv(blas.NoTrans, n-i, i, -1, y[i*ldy:], ldy, a[i*lda:], 1, 1, a[i*lda+i:], 1) 150 bi.Dgemv(blas.Trans, i, n-i, -1, a[i:], lda, x[i*ldx:], 1, 1, a[i*lda+i:], 1) 151 152 // Generate reflection P[i] to annihilate A[i, i+1:n] 153 a[i*lda+i], tauP[i] = impl.Dlarfg(n-i, a[i*lda+i], a[i*lda+min(i+1, n-1):], 1) 154 d[i] = a[i*lda+i] 155 if i < m-1 { 156 a[i*lda+i] = 1 157 // Compute X[i+1:m, i]. 158 bi.Dgemv(blas.NoTrans, m-i-1, n-i, 1, a[(i+1)*lda+i:], lda, a[i*lda+i:], 1, 0, x[(i+1)*ldx+i:], ldx) 159 bi.Dgemv(blas.Trans, n-i, i, 1, y[i*ldy:], ldy, a[i*lda+i:], 1, 0, x[i:], ldx) 160 bi.Dgemv(blas.NoTrans, m-i-1, i, -1, a[(i+1)*lda:], lda, x[i:], ldx, 1, x[(i+1)*ldx+i:], ldx) 161 bi.Dgemv(blas.NoTrans, i, n-i, 1, a[i:], lda, a[i*lda+i:], 1, 0, x[i:], ldx) 162 bi.Dgemv(blas.NoTrans, m-i-1, i, -1, x[(i+1)*ldx:], ldx, x[i:], ldx, 1, x[(i+1)*ldx+i:], ldx) 163 bi.Dscal(m-i-1, tauP[i], x[(i+1)*ldx+i:], ldx) 164 165 // Update A[i+1:m, i]. 166 bi.Dgemv(blas.NoTrans, m-i-1, i, -1, a[(i+1)*lda:], lda, y[i*ldy:], 1, 1, a[(i+1)*lda+i:], lda) 167 bi.Dgemv(blas.NoTrans, m-i-1, i+1, -1, x[(i+1)*ldx:], ldx, a[i:], lda, 1, a[(i+1)*lda+i:], lda) 168 169 // Generate reflection Q[i] to annihilate A[i+2:m, i]. 170 a[(i+1)*lda+i], tauQ[i] = impl.Dlarfg(m-i-1, a[(i+1)*lda+i], a[min(i+2, m-1)*lda+i:], lda) 171 e[i] = a[(i+1)*lda+i] 172 a[(i+1)*lda+i] = 1 173 174 // Compute Y[i+1:n, i]. 175 bi.Dgemv(blas.Trans, m-i-1, n-i-1, 1, a[(i+1)*lda+i+1:], lda, a[(i+1)*lda+i:], lda, 0, y[(i+1)*ldy+i:], ldy) 176 bi.Dgemv(blas.Trans, m-i-1, i, 1, a[(i+1)*lda:], lda, a[(i+1)*lda+i:], lda, 0, y[i:], ldy) 177 bi.Dgemv(blas.NoTrans, n-i-1, i, -1, y[(i+1)*ldy:], ldy, y[i:], ldy, 1, y[(i+1)*ldy+i:], ldy) 178 bi.Dgemv(blas.Trans, m-i-1, i+1, 1, x[(i+1)*ldx:], ldx, a[(i+1)*lda+i:], lda, 0, y[i:], ldy) 179 bi.Dgemv(blas.Trans, i+1, n-i-1, -1, a[i+1:], lda, y[i:], ldy, 1, y[(i+1)*ldy+i:], ldy) 180 bi.Dscal(n-i-1, tauQ[i], y[(i+1)*ldy+i:], ldy) 181 } 182 } 183 }