gonum.org/v1/gonum@v0.14.0/lapack/gonum/dlaln2.go (about)

     1  // Copyright ©2016 The Gonum Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package gonum
     6  
     7  import "math"
     8  
     9  // Dlaln2 solves a linear equation or a system of 2 linear equations of the form
    10  //
    11  //	(ca A   - w D) X = scale B  if trans == false,
    12  //	(ca Aᵀ - w D) X = scale B   if trans == true,
    13  //
    14  // where A is a na×na real matrix, ca is a real scalar, D is a na×na diagonal
    15  // real matrix, w is a scalar, real if nw == 1, complex if nw == 2, and X and B
    16  // are na×1 matrices, real if w is real, complex if w is complex.
    17  //
    18  // If w is complex, X and B are represented as na×2 matrices, the first column
    19  // of each being the real part and the second being the imaginary part.
    20  //
    21  // na and nw must be 1 or 2, otherwise Dlaln2 will panic.
    22  //
    23  // d1 and d2 are the diagonal elements of D. d2 is not used if na == 1.
    24  //
    25  // wr and wi represent the real and imaginary part, respectively, of the scalar
    26  // w. wi is not used if nw == 1.
    27  //
    28  // smin is the desired lower bound on the singular values of A. This should be
    29  // a safe distance away from underflow or overflow, say, between
    30  // (underflow/machine precision) and (overflow*machine precision).
    31  //
    32  // If both singular values of (ca A - w D) are less than smin, smin*identity
    33  // will be used instead of (ca A - w D). If only one singular value is less than
    34  // smin, one element of (ca A - w D) will be perturbed enough to make the
    35  // smallest singular value roughly smin. If both singular values are at least
    36  // smin, (ca A - w D) will not be perturbed. In any case, the perturbation will
    37  // be at most some small multiple of max(smin, ulp*norm(ca A - w D)). The
    38  // singular values are computed by infinity-norm approximations, and thus will
    39  // only be correct to a factor of 2 or so.
    40  //
    41  // All input quantities are assumed to be smaller than overflow by a reasonable
    42  // factor.
    43  //
    44  // scale is a scaling factor less than or equal to 1 which is chosen so that X
    45  // can be computed without overflow. X is further scaled if necessary to assure
    46  // that norm(ca A - w D)*norm(X) is less than overflow.
    47  //
    48  // xnorm contains the infinity-norm of X when X is regarded as a na×nw real
    49  // matrix.
    50  //
    51  // ok will be false if (ca A - w D) had to be perturbed to make its smallest
    52  // singular value greater than smin, otherwise ok will be true.
    53  //
    54  // Dlaln2 is an internal routine. It is exported for testing purposes.
    55  func (impl Implementation) Dlaln2(trans bool, na, nw int, smin, ca float64, a []float64, lda int, d1, d2 float64, b []float64, ldb int, wr, wi float64, x []float64, ldx int) (scale, xnorm float64, ok bool) {
    56  	// TODO(vladimir-ch): Consider splitting this function into two, one
    57  	// handling the real case (nw == 1) and the other handling the complex
    58  	// case (nw == 2). Given that Go has complex types, their signatures
    59  	// would be simpler and more natural, and the implementation not as
    60  	// convoluted.
    61  
    62  	switch {
    63  	case na != 1 && na != 2:
    64  		panic(badNa)
    65  	case nw != 1 && nw != 2:
    66  		panic(badNw)
    67  	case lda < na:
    68  		panic(badLdA)
    69  	case len(a) < (na-1)*lda+na:
    70  		panic(shortA)
    71  	case ldb < nw:
    72  		panic(badLdB)
    73  	case len(b) < (na-1)*ldb+nw:
    74  		panic(shortB)
    75  	case ldx < nw:
    76  		panic(badLdX)
    77  	case len(x) < (na-1)*ldx+nw:
    78  		panic(shortX)
    79  	}
    80  
    81  	smlnum := 2 * dlamchS
    82  	bignum := 1 / smlnum
    83  	smini := math.Max(smin, smlnum)
    84  
    85  	ok = true
    86  	scale = 1
    87  
    88  	if na == 1 {
    89  		// 1×1 (i.e., scalar) system C X = B.
    90  
    91  		if nw == 1 {
    92  			// Real 1×1 system.
    93  
    94  			// C = ca A - w D.
    95  			csr := ca*a[0] - wr*d1
    96  			cnorm := math.Abs(csr)
    97  
    98  			// If |C| < smini, use C = smini.
    99  			if cnorm < smini {
   100  				csr = smini
   101  				cnorm = smini
   102  				ok = false
   103  			}
   104  
   105  			// Check scaling for X = B / C.
   106  			bnorm := math.Abs(b[0])
   107  			if cnorm < 1 && bnorm > math.Max(1, bignum*cnorm) {
   108  				scale = 1 / bnorm
   109  			}
   110  
   111  			// Compute X.
   112  			x[0] = b[0] * scale / csr
   113  			xnorm = math.Abs(x[0])
   114  
   115  			return scale, xnorm, ok
   116  		}
   117  
   118  		// Complex 1×1 system (w is complex).
   119  
   120  		// C = ca A - w D.
   121  		csr := ca*a[0] - wr*d1
   122  		csi := -wi * d1
   123  		cnorm := math.Abs(csr) + math.Abs(csi)
   124  
   125  		// If |C| < smini, use C = smini.
   126  		if cnorm < smini {
   127  			csr = smini
   128  			csi = 0
   129  			cnorm = smini
   130  			ok = false
   131  		}
   132  
   133  		// Check scaling for X = B / C.
   134  		bnorm := math.Abs(b[0]) + math.Abs(b[1])
   135  		if cnorm < 1 && bnorm > math.Max(1, bignum*cnorm) {
   136  			scale = 1 / bnorm
   137  		}
   138  
   139  		// Compute X.
   140  		cx := complex(scale*b[0], scale*b[1]) / complex(csr, csi)
   141  		x[0], x[1] = real(cx), imag(cx)
   142  		xnorm = math.Abs(x[0]) + math.Abs(x[1])
   143  
   144  		return scale, xnorm, ok
   145  	}
   146  
   147  	// 2×2 system.
   148  
   149  	// Compute the real part of
   150  	//  C = ca A   - w D
   151  	// or
   152  	//  C = ca Aᵀ - w D.
   153  	crv := [4]float64{
   154  		ca*a[0] - wr*d1,
   155  		ca * a[1],
   156  		ca * a[lda],
   157  		ca*a[lda+1] - wr*d2,
   158  	}
   159  	if trans {
   160  		crv[1] = ca * a[lda]
   161  		crv[2] = ca * a[1]
   162  	}
   163  
   164  	pivot := [4][4]int{
   165  		{0, 1, 2, 3},
   166  		{1, 0, 3, 2},
   167  		{2, 3, 0, 1},
   168  		{3, 2, 1, 0},
   169  	}
   170  
   171  	if nw == 1 {
   172  		// Real 2×2 system (w is real).
   173  
   174  		// Find the largest element in C.
   175  		var cmax float64
   176  		var icmax int
   177  		for j, v := range crv {
   178  			v = math.Abs(v)
   179  			if v > cmax {
   180  				cmax = v
   181  				icmax = j
   182  			}
   183  		}
   184  
   185  		// If norm(C) < smini, use smini*identity.
   186  		if cmax < smini {
   187  			bnorm := math.Max(math.Abs(b[0]), math.Abs(b[ldb]))
   188  			if smini < 1 && bnorm > math.Max(1, bignum*smini) {
   189  				scale = 1 / bnorm
   190  			}
   191  			temp := scale / smini
   192  			x[0] = temp * b[0]
   193  			x[ldx] = temp * b[ldb]
   194  			xnorm = temp * bnorm
   195  			ok = false
   196  
   197  			return scale, xnorm, ok
   198  		}
   199  
   200  		// Gaussian elimination with complete pivoting.
   201  		// Form upper triangular matrix
   202  		//  [ur11 ur12]
   203  		//  [   0 ur22]
   204  		ur11 := crv[icmax]
   205  		ur12 := crv[pivot[icmax][1]]
   206  		cr21 := crv[pivot[icmax][2]]
   207  		cr22 := crv[pivot[icmax][3]]
   208  		ur11r := 1 / ur11
   209  		lr21 := ur11r * cr21
   210  		ur22 := cr22 - ur12*lr21
   211  
   212  		// If smaller pivot < smini, use smini.
   213  		if math.Abs(ur22) < smini {
   214  			ur22 = smini
   215  			ok = false
   216  		}
   217  
   218  		var br1, br2 float64
   219  		if icmax > 1 {
   220  			// If the pivot lies in the second row, swap the rows.
   221  			br1 = b[ldb]
   222  			br2 = b[0]
   223  		} else {
   224  			br1 = b[0]
   225  			br2 = b[ldb]
   226  		}
   227  		br2 -= lr21 * br1 // Apply the Gaussian elimination step to the right-hand side.
   228  
   229  		bbnd := math.Max(math.Abs(ur22*ur11r*br1), math.Abs(br2))
   230  		if bbnd > 1 && math.Abs(ur22) < 1 && bbnd >= bignum*math.Abs(ur22) {
   231  			scale = 1 / bbnd
   232  		}
   233  
   234  		// Solve the linear system ur*xr=br.
   235  		xr2 := br2 * scale / ur22
   236  		xr1 := scale*br1*ur11r - ur11r*ur12*xr2
   237  		if icmax&0x1 != 0 {
   238  			// If the pivot lies in the second column, swap the components of the solution.
   239  			x[0] = xr2
   240  			x[ldx] = xr1
   241  		} else {
   242  			x[0] = xr1
   243  			x[ldx] = xr2
   244  		}
   245  		xnorm = math.Max(math.Abs(xr1), math.Abs(xr2))
   246  
   247  		// Further scaling if norm(A)*norm(X) > overflow.
   248  		if xnorm > 1 && cmax > 1 && xnorm > bignum/cmax {
   249  			temp := cmax / bignum
   250  			x[0] *= temp
   251  			x[ldx] *= temp
   252  			xnorm *= temp
   253  			scale *= temp
   254  		}
   255  
   256  		return scale, xnorm, ok
   257  	}
   258  
   259  	// Complex 2×2 system (w is complex).
   260  
   261  	// Find the largest element in C.
   262  	civ := [4]float64{
   263  		-wi * d1,
   264  		0,
   265  		0,
   266  		-wi * d2,
   267  	}
   268  	var cmax float64
   269  	var icmax int
   270  	for j, v := range crv {
   271  		v := math.Abs(v)
   272  		if v+math.Abs(civ[j]) > cmax {
   273  			cmax = v + math.Abs(civ[j])
   274  			icmax = j
   275  		}
   276  	}
   277  
   278  	// If norm(C) < smini, use smini*identity.
   279  	if cmax < smini {
   280  		br1 := math.Abs(b[0]) + math.Abs(b[1])
   281  		br2 := math.Abs(b[ldb]) + math.Abs(b[ldb+1])
   282  		bnorm := math.Max(br1, br2)
   283  		if smini < 1 && bnorm > 1 && bnorm > bignum*smini {
   284  			scale = 1 / bnorm
   285  		}
   286  		temp := scale / smini
   287  		x[0] = temp * b[0]
   288  		x[1] = temp * b[1]
   289  		x[ldb] = temp * b[ldb]
   290  		x[ldb+1] = temp * b[ldb+1]
   291  		xnorm = temp * bnorm
   292  		ok = false
   293  
   294  		return scale, xnorm, ok
   295  	}
   296  
   297  	// Gaussian elimination with complete pivoting.
   298  	ur11 := crv[icmax]
   299  	ui11 := civ[icmax]
   300  	ur12 := crv[pivot[icmax][1]]
   301  	ui12 := civ[pivot[icmax][1]]
   302  	cr21 := crv[pivot[icmax][2]]
   303  	ci21 := civ[pivot[icmax][2]]
   304  	cr22 := crv[pivot[icmax][3]]
   305  	ci22 := civ[pivot[icmax][3]]
   306  	var (
   307  		ur11r, ui11r float64
   308  		lr21, li21   float64
   309  		ur12s, ui12s float64
   310  		ur22, ui22   float64
   311  	)
   312  	if icmax == 0 || icmax == 3 {
   313  		// Off-diagonals of pivoted C are real.
   314  		if math.Abs(ur11) > math.Abs(ui11) {
   315  			temp := ui11 / ur11
   316  			ur11r = 1 / (ur11 * (1 + temp*temp))
   317  			ui11r = -temp * ur11r
   318  		} else {
   319  			temp := ur11 / ui11
   320  			ui11r = -1 / (ui11 * (1 + temp*temp))
   321  			ur11r = -temp * ui11r
   322  		}
   323  		lr21 = cr21 * ur11r
   324  		li21 = cr21 * ui11r
   325  		ur12s = ur12 * ur11r
   326  		ui12s = ur12 * ui11r
   327  		ur22 = cr22 - ur12*lr21
   328  		ui22 = ci22 - ur12*li21
   329  	} else {
   330  		// Diagonals of pivoted C are real.
   331  		ur11r = 1 / ur11
   332  		// ui11r is already 0.
   333  		lr21 = cr21 * ur11r
   334  		li21 = ci21 * ur11r
   335  		ur12s = ur12 * ur11r
   336  		ui12s = ui12 * ur11r
   337  		ur22 = cr22 - ur12*lr21 + ui12*li21
   338  		ui22 = -ur12*li21 - ui12*lr21
   339  	}
   340  	u22abs := math.Abs(ur22) + math.Abs(ui22)
   341  
   342  	// If smaller pivot < smini, use smini.
   343  	if u22abs < smini {
   344  		ur22 = smini
   345  		ui22 = 0
   346  		ok = false
   347  	}
   348  
   349  	var br1, bi1 float64
   350  	var br2, bi2 float64
   351  	if icmax > 1 {
   352  		// If the pivot lies in the second row, swap the rows.
   353  		br1 = b[ldb]
   354  		bi1 = b[ldb+1]
   355  		br2 = b[0]
   356  		bi2 = b[1]
   357  	} else {
   358  		br1 = b[0]
   359  		bi1 = b[1]
   360  		br2 = b[ldb]
   361  		bi2 = b[ldb+1]
   362  	}
   363  	br2 += -lr21*br1 + li21*bi1
   364  	bi2 += -li21*br1 - lr21*bi1
   365  
   366  	bbnd1 := u22abs * (math.Abs(ur11r) + math.Abs(ui11r)) * (math.Abs(br1) + math.Abs(bi1))
   367  	bbnd2 := math.Abs(br2) + math.Abs(bi2)
   368  	bbnd := math.Max(bbnd1, bbnd2)
   369  	if bbnd > 1 && u22abs < 1 && bbnd >= bignum*u22abs {
   370  		scale = 1 / bbnd
   371  		br1 *= scale
   372  		bi1 *= scale
   373  		br2 *= scale
   374  		bi2 *= scale
   375  	}
   376  
   377  	cx2 := complex(br2, bi2) / complex(ur22, ui22)
   378  	xr2, xi2 := real(cx2), imag(cx2)
   379  	xr1 := ur11r*br1 - ui11r*bi1 - ur12s*xr2 + ui12s*xi2
   380  	xi1 := ui11r*br1 + ur11r*bi1 - ui12s*xr2 - ur12s*xi2
   381  	if icmax&0x1 != 0 {
   382  		// If the pivot lies in the second column, swap the components of the solution.
   383  		x[0] = xr2
   384  		x[1] = xi2
   385  		x[ldx] = xr1
   386  		x[ldx+1] = xi1
   387  	} else {
   388  		x[0] = xr1
   389  		x[1] = xi1
   390  		x[ldx] = xr2
   391  		x[ldx+1] = xi2
   392  	}
   393  	xnorm = math.Max(math.Abs(xr1)+math.Abs(xi1), math.Abs(xr2)+math.Abs(xi2))
   394  
   395  	// Further scaling if norm(A)*norm(X) > overflow.
   396  	if xnorm > 1 && cmax > 1 && xnorm > bignum/cmax {
   397  		temp := cmax / bignum
   398  		x[0] *= temp
   399  		x[1] *= temp
   400  		x[ldx] *= temp
   401  		x[ldx+1] *= temp
   402  		xnorm *= temp
   403  		scale *= temp
   404  	}
   405  
   406  	return scale, xnorm, ok
   407  }