gonum.org/v1/gonum@v0.14.0/lapack/gonum/dlansb.go (about) 1 // Copyright ©2019 The Gonum Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package gonum 6 7 import ( 8 "math" 9 10 "gonum.org/v1/gonum/blas" 11 "gonum.org/v1/gonum/lapack" 12 ) 13 14 // Dlansb returns the given norm of an n×n symmetric band matrix with kd 15 // super-diagonals. 16 // 17 // When norm is lapack.MaxColumnSum or lapack.MaxRowSum, the length of work must 18 // be at least n. 19 func (impl Implementation) Dlansb(norm lapack.MatrixNorm, uplo blas.Uplo, n, kd int, ab []float64, ldab int, work []float64) float64 { 20 switch { 21 case norm != lapack.MaxAbs && norm != lapack.MaxRowSum && norm != lapack.MaxColumnSum && norm != lapack.Frobenius: 22 panic(badNorm) 23 case uplo != blas.Upper && uplo != blas.Lower: 24 panic(badUplo) 25 case n < 0: 26 panic(nLT0) 27 case kd < 0: 28 panic(kdLT0) 29 case ldab < kd+1: 30 panic(badLdA) 31 } 32 33 // Quick return if possible. 34 if n == 0 { 35 return 0 36 } 37 38 switch { 39 case len(ab) < (n-1)*ldab+kd+1: 40 panic(shortAB) 41 case len(work) < n && (norm == lapack.MaxColumnSum || norm == lapack.MaxRowSum): 42 panic(shortWork) 43 } 44 45 var value float64 46 switch norm { 47 case lapack.MaxAbs: 48 if uplo == blas.Upper { 49 for i := 0; i < n; i++ { 50 for j := 0; j < min(n-i, kd+1); j++ { 51 aij := math.Abs(ab[i*ldab+j]) 52 if aij > value || math.IsNaN(aij) { 53 value = aij 54 } 55 } 56 } 57 } else { 58 for i := 0; i < n; i++ { 59 for j := max(0, kd-i); j < kd+1; j++ { 60 aij := math.Abs(ab[i*ldab+j]) 61 if aij > value || math.IsNaN(aij) { 62 value = aij 63 } 64 } 65 } 66 } 67 case lapack.MaxColumnSum, lapack.MaxRowSum: 68 work = work[:n] 69 var sum float64 70 if uplo == blas.Upper { 71 for i := range work { 72 work[i] = 0 73 } 74 for i := 0; i < n; i++ { 75 sum := work[i] + math.Abs(ab[i*ldab]) 76 for j := i + 1; j < min(i+kd+1, n); j++ { 77 aij := math.Abs(ab[i*ldab+j-i]) 78 sum += aij 79 work[j] += aij 80 } 81 if sum > value || math.IsNaN(sum) { 82 value = sum 83 } 84 } 85 } else { 86 for i := 0; i < n; i++ { 87 sum = 0 88 for j := max(0, i-kd); j < i; j++ { 89 aij := math.Abs(ab[i*ldab+kd+j-i]) 90 sum += aij 91 work[j] += aij 92 } 93 work[i] = sum + math.Abs(ab[i*ldab+kd]) 94 } 95 for _, sum := range work { 96 if sum > value || math.IsNaN(sum) { 97 value = sum 98 } 99 } 100 } 101 case lapack.Frobenius: 102 scale := 0.0 103 sum := 1.0 104 if uplo == blas.Upper { 105 if kd > 0 { 106 // Sum off-diagonals. 107 for i := 0; i < n-1; i++ { 108 ilen := min(n-i-1, kd) 109 scale, sum = impl.Dlassq(ilen, ab[i*ldab+1:], 1, scale, sum) 110 } 111 sum *= 2 112 } 113 // Sum diagonal. 114 scale, sum = impl.Dlassq(n, ab, ldab, scale, sum) 115 } else { 116 if kd > 0 { 117 // Sum off-diagonals. 118 for i := 1; i < n; i++ { 119 ilen := min(i, kd) 120 scale, sum = impl.Dlassq(ilen, ab[i*ldab+kd-ilen:], 1, scale, sum) 121 } 122 sum *= 2 123 } 124 // Sum diagonal. 125 scale, sum = impl.Dlassq(n, ab[kd:], ldab, scale, sum) 126 } 127 value = scale * math.Sqrt(sum) 128 } 129 130 return value 131 }