gonum.org/v1/gonum@v0.14.0/lapack/gonum/dlaqp2.go (about) 1 // Copyright ©2017 The Gonum Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package gonum 6 7 import ( 8 "math" 9 10 "gonum.org/v1/gonum/blas" 11 "gonum.org/v1/gonum/blas/blas64" 12 ) 13 14 // Dlaqp2 computes a QR factorization with column pivoting of the block A[offset:m, 0:n] 15 // of the m×n matrix A. The block A[0:offset, 0:n] is accordingly pivoted, but not factorized. 16 // 17 // On exit, the upper triangle of block A[offset:m, 0:n] is the triangular factor obtained. 18 // The elements in block A[offset:m, 0:n] below the diagonal, together with tau, represent 19 // the orthogonal matrix Q as a product of elementary reflectors. 20 // 21 // offset is number of rows of the matrix A that must be pivoted but not factorized. 22 // offset must not be negative otherwise Dlaqp2 will panic. 23 // 24 // On exit, jpvt holds the permutation that was applied; the jth column of A*P was the 25 // jpvt[j] column of A. jpvt must have length n, otherwise Dlaqp2 will panic. 26 // 27 // On exit tau holds the scalar factors of the elementary reflectors. It must have length 28 // at least min(m-offset, n) otherwise Dlaqp2 will panic. 29 // 30 // vn1 and vn2 hold the partial and complete column norms respectively. They must have length n, 31 // otherwise Dlaqp2 will panic. 32 // 33 // work must have length n, otherwise Dlaqp2 will panic. 34 // 35 // Dlaqp2 is an internal routine. It is exported for testing purposes. 36 func (impl Implementation) Dlaqp2(m, n, offset int, a []float64, lda int, jpvt []int, tau, vn1, vn2, work []float64) { 37 switch { 38 case m < 0: 39 panic(mLT0) 40 case n < 0: 41 panic(nLT0) 42 case offset < 0: 43 panic(offsetLT0) 44 case offset > m: 45 panic(offsetGTM) 46 case lda < max(1, n): 47 panic(badLdA) 48 } 49 50 // Quick return if possible. 51 if m == 0 || n == 0 { 52 return 53 } 54 55 mn := min(m-offset, n) 56 switch { 57 case len(a) < (m-1)*lda+n: 58 panic(shortA) 59 case len(jpvt) != n: 60 panic(badLenJpvt) 61 case len(tau) < mn: 62 panic(shortTau) 63 case len(vn1) < n: 64 panic(shortVn1) 65 case len(vn2) < n: 66 panic(shortVn2) 67 case len(work) < n: 68 panic(shortWork) 69 } 70 71 tol3z := math.Sqrt(dlamchE) 72 73 bi := blas64.Implementation() 74 75 // Compute factorization. 76 for i := 0; i < mn; i++ { 77 offpi := offset + i 78 79 // Determine ith pivot column and swap if necessary. 80 p := i + bi.Idamax(n-i, vn1[i:], 1) 81 if p != i { 82 bi.Dswap(m, a[p:], lda, a[i:], lda) 83 jpvt[p], jpvt[i] = jpvt[i], jpvt[p] 84 vn1[p] = vn1[i] 85 vn2[p] = vn2[i] 86 } 87 88 // Generate elementary reflector H_i. 89 if offpi < m-1 { 90 a[offpi*lda+i], tau[i] = impl.Dlarfg(m-offpi, a[offpi*lda+i], a[(offpi+1)*lda+i:], lda) 91 } else { 92 tau[i] = 0 93 } 94 95 if i < n-1 { 96 // Apply H_iᵀ to A[offset+i:m, i:n] from the left. 97 aii := a[offpi*lda+i] 98 a[offpi*lda+i] = 1 99 impl.Dlarf(blas.Left, m-offpi, n-i-1, a[offpi*lda+i:], lda, tau[i], a[offpi*lda+i+1:], lda, work) 100 a[offpi*lda+i] = aii 101 } 102 103 // Update partial column norms. 104 for j := i + 1; j < n; j++ { 105 if vn1[j] == 0 { 106 continue 107 } 108 109 // The following marked lines follow from the 110 // analysis in Lapack Working Note 176. 111 r := math.Abs(a[offpi*lda+j]) / vn1[j] // * 112 temp := math.Max(0, 1-r*r) // * 113 r = vn1[j] / vn2[j] // * 114 temp2 := temp * r * r // * 115 if temp2 < tol3z { 116 var v float64 117 if offpi < m-1 { 118 v = bi.Dnrm2(m-offpi-1, a[(offpi+1)*lda+j:], lda) 119 } 120 vn1[j] = v 121 vn2[j] = v 122 } else { 123 vn1[j] *= math.Sqrt(temp) // * 124 } 125 } 126 } 127 }