gonum.org/v1/gonum@v0.14.0/lapack/gonum/dlasq6.go (about) 1 // Copyright ©2015 The Gonum Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package gonum 6 7 import "math" 8 9 // Dlasq6 computes one dqd transform in ping-pong form with protection against 10 // overflow and underflow. z has length at least 4*(n0+1) and holds the qd array. 11 // i0 is the zero-based first index. 12 // n0 is the zero-based last index. 13 // 14 // Dlasq6 is an internal routine. It is exported for testing purposes. 15 func (impl Implementation) Dlasq6(i0, n0 int, z []float64, pp int) (dmin, dmin1, dmin2, dn, dnm1, dnm2 float64) { 16 switch { 17 case i0 < 0: 18 panic(i0LT0) 19 case n0 < 0: 20 panic(n0LT0) 21 case len(z) < 4*n0: 22 panic(shortZ) 23 case pp != 0 && pp != 1: 24 panic(badPp) 25 } 26 27 if n0-i0-1 <= 0 { 28 return dmin, dmin1, dmin2, dn, dnm1, dnm2 29 } 30 31 safmin := dlamchS 32 j4 := 4*(i0+1) + pp - 4 // -4 rather than -3 for zero indexing 33 emin := z[j4+4] 34 d := z[j4] 35 dmin = d 36 if pp == 0 { 37 for j4loop := 4 * (i0 + 1); j4loop <= 4*((n0+1)-3); j4loop += 4 { 38 j4 := j4loop - 1 // Translate back to zero-indexed. 39 z[j4-2] = d + z[j4-1] 40 if z[j4-2] == 0 { 41 z[j4] = 0 42 d = z[j4+1] 43 dmin = d 44 emin = 0 45 } else if safmin*z[j4+1] < z[j4-2] && safmin*z[j4-2] < z[j4+1] { 46 tmp := z[j4+1] / z[j4-2] 47 z[j4] = z[j4-1] * tmp 48 d *= tmp 49 } else { 50 z[j4] = z[j4+1] * (z[j4-1] / z[j4-2]) 51 d = z[j4+1] * (d / z[j4-2]) 52 } 53 dmin = math.Min(dmin, d) 54 emin = math.Min(emin, z[j4]) 55 } 56 } else { 57 for j4loop := 4 * (i0 + 1); j4loop <= 4*((n0+1)-3); j4loop += 4 { 58 j4 := j4loop - 1 59 z[j4-3] = d + z[j4] 60 if z[j4-3] == 0 { 61 z[j4-1] = 0 62 d = z[j4+2] 63 dmin = d 64 emin = 0 65 } else if safmin*z[j4+2] < z[j4-3] && safmin*z[j4-3] < z[j4+2] { 66 tmp := z[j4+2] / z[j4-3] 67 z[j4-1] = z[j4] * tmp 68 d *= tmp 69 } else { 70 z[j4-1] = z[j4+2] * (z[j4] / z[j4-3]) 71 d = z[j4+2] * (d / z[j4-3]) 72 } 73 dmin = math.Min(dmin, d) 74 emin = math.Min(emin, z[j4-1]) 75 } 76 } 77 // Unroll last two steps. 78 dnm2 = d 79 dmin2 = dmin 80 j4 = 4*(n0-1) - pp - 1 81 j4p2 := j4 + 2*pp - 1 82 z[j4-2] = dnm2 + z[j4p2] 83 if z[j4-2] == 0 { 84 z[j4] = 0 85 dnm1 = z[j4p2+2] 86 dmin = dnm1 87 emin = 0 88 } else if safmin*z[j4p2+2] < z[j4-2] && safmin*z[j4-2] < z[j4p2+2] { 89 tmp := z[j4p2+2] / z[j4-2] 90 z[j4] = z[j4p2] * tmp 91 dnm1 = dnm2 * tmp 92 } else { 93 z[j4] = z[j4p2+2] * (z[j4p2] / z[j4-2]) 94 dnm1 = z[j4p2+2] * (dnm2 / z[j4-2]) 95 } 96 dmin = math.Min(dmin, dnm1) 97 dmin1 = dmin 98 j4 += 4 99 j4p2 = j4 + 2*pp - 1 100 z[j4-2] = dnm1 + z[j4p2] 101 if z[j4-2] == 0 { 102 z[j4] = 0 103 dn = z[j4p2+2] 104 dmin = dn 105 emin = 0 106 } else if safmin*z[j4p2+2] < z[j4-2] && safmin*z[j4-2] < z[j4p2+2] { 107 tmp := z[j4p2+2] / z[j4-2] 108 z[j4] = z[j4p2] * tmp 109 dn = dnm1 * tmp 110 } else { 111 z[j4] = z[j4p2+2] * (z[j4p2] / z[j4-2]) 112 dn = z[j4p2+2] * (dnm1 / z[j4-2]) 113 } 114 dmin = math.Min(dmin, dn) 115 z[j4+2] = dn 116 z[4*(n0+1)-pp-1] = emin 117 return dmin, dmin1, dmin2, dn, dnm1, dnm2 118 }