gonum.org/v1/gonum@v0.14.0/lapack/gonum/dorghr.go (about) 1 // Copyright ©2016 The Gonum Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package gonum 6 7 // Dorghr generates an n×n orthogonal matrix Q which is defined as the product 8 // of ihi-ilo elementary reflectors: 9 // 10 // Q = H_{ilo} H_{ilo+1} ... H_{ihi-1}. 11 // 12 // a and lda represent an n×n matrix that contains the elementary reflectors, as 13 // returned by Dgehrd. On return, a is overwritten by the n×n orthogonal matrix 14 // Q. Q will be equal to the identity matrix except in the submatrix 15 // Q[ilo+1:ihi+1,ilo+1:ihi+1]. 16 // 17 // ilo and ihi must have the same values as in the previous call of Dgehrd. It 18 // must hold that 19 // 20 // 0 <= ilo <= ihi < n if n > 0, 21 // ilo = 0, ihi = -1 if n == 0. 22 // 23 // tau contains the scalar factors of the elementary reflectors, as returned by 24 // Dgehrd. tau must have length n-1. 25 // 26 // work must have length at least max(1,lwork) and lwork must be at least 27 // ihi-ilo. For optimum performance lwork must be at least (ihi-ilo)*nb where nb 28 // is the optimal blocksize. On return, work[0] will contain the optimal value 29 // of lwork. 30 // 31 // If lwork == -1, instead of performing Dorghr, only the optimal value of lwork 32 // will be stored into work[0]. 33 // 34 // If any requirement on input sizes is not met, Dorghr will panic. 35 // 36 // Dorghr is an internal routine. It is exported for testing purposes. 37 func (impl Implementation) Dorghr(n, ilo, ihi int, a []float64, lda int, tau, work []float64, lwork int) { 38 nh := ihi - ilo 39 switch { 40 case ilo < 0 || max(1, n) <= ilo: 41 panic(badIlo) 42 case ihi < min(ilo, n-1) || n <= ihi: 43 panic(badIhi) 44 case lda < max(1, n): 45 panic(badLdA) 46 case lwork < max(1, nh) && lwork != -1: 47 panic(badLWork) 48 case len(work) < max(1, lwork): 49 panic(shortWork) 50 } 51 52 // Quick return if possible. 53 if n == 0 { 54 work[0] = 1 55 return 56 } 57 58 lwkopt := max(1, nh) * impl.Ilaenv(1, "DORGQR", " ", nh, nh, nh, -1) 59 if lwork == -1 { 60 work[0] = float64(lwkopt) 61 return 62 } 63 64 switch { 65 case len(a) < (n-1)*lda+n: 66 panic(shortA) 67 case len(tau) < n-1: 68 panic(shortTau) 69 } 70 71 // Shift the vectors which define the elementary reflectors one column 72 // to the right. 73 for i := ilo + 2; i < ihi+1; i++ { 74 copy(a[i*lda+ilo+1:i*lda+i], a[i*lda+ilo:i*lda+i-1]) 75 } 76 // Set the first ilo+1 and the last n-ihi-1 rows and columns to those of 77 // the identity matrix. 78 for i := 0; i < ilo+1; i++ { 79 for j := 0; j < n; j++ { 80 a[i*lda+j] = 0 81 } 82 a[i*lda+i] = 1 83 } 84 for i := ilo + 1; i < ihi+1; i++ { 85 for j := 0; j <= ilo; j++ { 86 a[i*lda+j] = 0 87 } 88 for j := i; j < n; j++ { 89 a[i*lda+j] = 0 90 } 91 } 92 for i := ihi + 1; i < n; i++ { 93 for j := 0; j < n; j++ { 94 a[i*lda+j] = 0 95 } 96 a[i*lda+i] = 1 97 } 98 if nh > 0 { 99 // Generate Q[ilo+1:ihi+1,ilo+1:ihi+1]. 100 impl.Dorgqr(nh, nh, nh, a[(ilo+1)*lda+ilo+1:], lda, tau[ilo:ihi], work, lwork) 101 } 102 work[0] = float64(lwkopt) 103 }