gonum.org/v1/gonum@v0.14.0/lapack/gonum/dormhr.go (about) 1 // Copyright ©2016 The Gonum Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package gonum 6 7 import "gonum.org/v1/gonum/blas" 8 9 // Dormhr multiplies an m×n general matrix C with an nq×nq orthogonal matrix Q 10 // 11 // Q * C if side == blas.Left and trans == blas.NoTrans, 12 // Qᵀ * C if side == blas.Left and trans == blas.Trans, 13 // C * Q if side == blas.Right and trans == blas.NoTrans, 14 // C * Qᵀ if side == blas.Right and trans == blas.Trans, 15 // 16 // where nq == m if side == blas.Left and nq == n if side == blas.Right. 17 // 18 // Q is defined implicitly as the product of ihi-ilo elementary reflectors, as 19 // returned by Dgehrd: 20 // 21 // Q = H_{ilo} H_{ilo+1} ... H_{ihi-1}. 22 // 23 // Q is equal to the identity matrix except in the submatrix 24 // Q[ilo+1:ihi+1,ilo+1:ihi+1]. 25 // 26 // ilo and ihi must have the same values as in the previous call of Dgehrd. It 27 // must hold that 28 // 29 // 0 <= ilo <= ihi < m if m > 0 and side == blas.Left, 30 // ilo = 0 and ihi = -1 if m = 0 and side == blas.Left, 31 // 0 <= ilo <= ihi < n if n > 0 and side == blas.Right, 32 // ilo = 0 and ihi = -1 if n = 0 and side == blas.Right. 33 // 34 // a and lda represent an m×m matrix if side == blas.Left and an n×n matrix if 35 // side == blas.Right. The matrix contains vectors which define the elementary 36 // reflectors, as returned by Dgehrd. 37 // 38 // tau contains the scalar factors of the elementary reflectors, as returned by 39 // Dgehrd. tau must have length m-1 if side == blas.Left and n-1 if side == 40 // blas.Right. 41 // 42 // c and ldc represent the m×n matrix C. On return, c is overwritten by the 43 // product with Q. 44 // 45 // work must have length at least max(1,lwork), and lwork must be at least 46 // max(1,n), if side == blas.Left, and max(1,m), if side == blas.Right. For 47 // optimum performance lwork should be at least n*nb if side == blas.Left and 48 // m*nb if side == blas.Right, where nb is the optimal block size. On return, 49 // work[0] will contain the optimal value of lwork. 50 // 51 // If lwork == -1, instead of performing Dormhr, only the optimal value of lwork 52 // will be stored in work[0]. 53 // 54 // If any requirement on input sizes is not met, Dormhr will panic. 55 // 56 // Dormhr is an internal routine. It is exported for testing purposes. 57 func (impl Implementation) Dormhr(side blas.Side, trans blas.Transpose, m, n, ilo, ihi int, a []float64, lda int, tau, c []float64, ldc int, work []float64, lwork int) { 58 nq := n // The order of Q. 59 nw := m // The minimum length of work. 60 if side == blas.Left { 61 nq = m 62 nw = n 63 } 64 switch { 65 case side != blas.Left && side != blas.Right: 66 panic(badSide) 67 case trans != blas.NoTrans && trans != blas.Trans: 68 panic(badTrans) 69 case m < 0: 70 panic(mLT0) 71 case n < 0: 72 panic(nLT0) 73 case ilo < 0 || max(1, nq) <= ilo: 74 panic(badIlo) 75 case ihi < min(ilo, nq-1) || nq <= ihi: 76 panic(badIhi) 77 case lda < max(1, nq): 78 panic(badLdA) 79 case lwork < max(1, nw) && lwork != -1: 80 panic(badLWork) 81 case len(work) < max(1, lwork): 82 panic(shortWork) 83 } 84 85 // Quick return if possible. 86 if m == 0 || n == 0 { 87 work[0] = 1 88 return 89 } 90 91 nh := ihi - ilo 92 var nb int 93 if side == blas.Left { 94 opts := "LN" 95 if trans == blas.Trans { 96 opts = "LT" 97 } 98 nb = impl.Ilaenv(1, "DORMQR", opts, nh, n, nh, -1) 99 } else { 100 opts := "RN" 101 if trans == blas.Trans { 102 opts = "RT" 103 } 104 nb = impl.Ilaenv(1, "DORMQR", opts, m, nh, nh, -1) 105 } 106 lwkopt := max(1, nw) * nb 107 if lwork == -1 { 108 work[0] = float64(lwkopt) 109 return 110 } 111 112 if nh == 0 { 113 work[0] = 1 114 return 115 } 116 117 switch { 118 case len(a) < (nq-1)*lda+nq: 119 panic(shortA) 120 case len(c) < (m-1)*ldc+n: 121 panic(shortC) 122 case len(tau) != nq-1: 123 panic(badLenTau) 124 } 125 126 if side == blas.Left { 127 impl.Dormqr(side, trans, nh, n, nh, a[(ilo+1)*lda+ilo:], lda, 128 tau[ilo:ihi], c[(ilo+1)*ldc:], ldc, work, lwork) 129 } else { 130 impl.Dormqr(side, trans, m, nh, nh, a[(ilo+1)*lda+ilo:], lda, 131 tau[ilo:ihi], c[ilo+1:], ldc, work, lwork) 132 } 133 work[0] = float64(lwkopt) 134 }