gonum.org/v1/gonum@v0.14.0/lapack/gonum/dpocon.go (about) 1 // Copyright ©2015 The Gonum Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package gonum 6 7 import ( 8 "math" 9 10 "gonum.org/v1/gonum/blas" 11 "gonum.org/v1/gonum/blas/blas64" 12 ) 13 14 // Dpocon estimates the reciprocal of the condition number of a positive-definite 15 // matrix A given the Cholesky decomposition of A. The condition number computed 16 // is based on the 1-norm and the ∞-norm. 17 // 18 // anorm is the 1-norm and the ∞-norm of the original matrix A. 19 // 20 // work is a temporary data slice of length at least 3*n and Dpocon will panic otherwise. 21 // 22 // iwork is a temporary data slice of length at least n and Dpocon will panic otherwise. 23 func (impl Implementation) Dpocon(uplo blas.Uplo, n int, a []float64, lda int, anorm float64, work []float64, iwork []int) float64 { 24 switch { 25 case uplo != blas.Upper && uplo != blas.Lower: 26 panic(badUplo) 27 case n < 0: 28 panic(nLT0) 29 case lda < max(1, n): 30 panic(badLdA) 31 case anorm < 0: 32 panic(negANorm) 33 } 34 35 // Quick return if possible. 36 if n == 0 { 37 return 1 38 } 39 40 switch { 41 case len(a) < (n-1)*lda+n: 42 panic(shortA) 43 case len(work) < 3*n: 44 panic(shortWork) 45 case len(iwork) < n: 46 panic(shortIWork) 47 } 48 49 if anorm == 0 { 50 return 0 51 } 52 53 bi := blas64.Implementation() 54 55 var ( 56 smlnum = dlamchS 57 rcond float64 58 sl, su float64 59 normin bool 60 ainvnm float64 61 kase int 62 isave [3]int 63 ) 64 for { 65 ainvnm, kase = impl.Dlacn2(n, work[n:], work, iwork, ainvnm, kase, &isave) 66 if kase == 0 { 67 if ainvnm != 0 { 68 rcond = (1 / ainvnm) / anorm 69 } 70 return rcond 71 } 72 if uplo == blas.Upper { 73 sl = impl.Dlatrs(blas.Upper, blas.Trans, blas.NonUnit, normin, n, a, lda, work, work[2*n:]) 74 normin = true 75 su = impl.Dlatrs(blas.Upper, blas.NoTrans, blas.NonUnit, normin, n, a, lda, work, work[2*n:]) 76 } else { 77 sl = impl.Dlatrs(blas.Lower, blas.NoTrans, blas.NonUnit, normin, n, a, lda, work, work[2*n:]) 78 normin = true 79 su = impl.Dlatrs(blas.Lower, blas.Trans, blas.NonUnit, normin, n, a, lda, work, work[2*n:]) 80 } 81 scale := sl * su 82 if scale != 1 { 83 ix := bi.Idamax(n, work, 1) 84 if scale == 0 || scale < math.Abs(work[ix])*smlnum { 85 return rcond 86 } 87 impl.Drscl(n, scale, work, 1) 88 } 89 } 90 }