gonum.org/v1/gonum@v0.14.0/lapack/gonum/dtrtri.go (about) 1 // Copyright ©2015 The Gonum Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package gonum 6 7 import ( 8 "gonum.org/v1/gonum/blas" 9 "gonum.org/v1/gonum/blas/blas64" 10 ) 11 12 // Dtrtri computes the inverse of a triangular matrix, storing the result in place 13 // into a. This is the BLAS level 3 version of the algorithm which builds upon 14 // Dtrti2 to operate on matrix blocks instead of only individual columns. 15 // 16 // Dtrtri will not perform the inversion if the matrix is singular, and returns 17 // a boolean indicating whether the inversion was successful. 18 func (impl Implementation) Dtrtri(uplo blas.Uplo, diag blas.Diag, n int, a []float64, lda int) (ok bool) { 19 switch { 20 case uplo != blas.Upper && uplo != blas.Lower: 21 panic(badUplo) 22 case diag != blas.NonUnit && diag != blas.Unit: 23 panic(badDiag) 24 case n < 0: 25 panic(nLT0) 26 case lda < max(1, n): 27 panic(badLdA) 28 } 29 30 if n == 0 { 31 return true 32 } 33 34 if len(a) < (n-1)*lda+n { 35 panic(shortA) 36 } 37 38 if diag == blas.NonUnit { 39 for i := 0; i < n; i++ { 40 if a[i*lda+i] == 0 { 41 return false 42 } 43 } 44 } 45 46 bi := blas64.Implementation() 47 48 nb := impl.Ilaenv(1, "DTRTRI", "UD", n, -1, -1, -1) 49 if nb <= 1 || nb > n { 50 impl.Dtrti2(uplo, diag, n, a, lda) 51 return true 52 } 53 if uplo == blas.Upper { 54 for j := 0; j < n; j += nb { 55 jb := min(nb, n-j) 56 bi.Dtrmm(blas.Left, blas.Upper, blas.NoTrans, diag, j, jb, 1, a, lda, a[j:], lda) 57 bi.Dtrsm(blas.Right, blas.Upper, blas.NoTrans, diag, j, jb, -1, a[j*lda+j:], lda, a[j:], lda) 58 impl.Dtrti2(blas.Upper, diag, jb, a[j*lda+j:], lda) 59 } 60 return true 61 } 62 nn := ((n - 1) / nb) * nb 63 for j := nn; j >= 0; j -= nb { 64 jb := min(nb, n-j) 65 if j+jb <= n-1 { 66 bi.Dtrmm(blas.Left, blas.Lower, blas.NoTrans, diag, n-j-jb, jb, 1, a[(j+jb)*lda+j+jb:], lda, a[(j+jb)*lda+j:], lda) 67 bi.Dtrsm(blas.Right, blas.Lower, blas.NoTrans, diag, n-j-jb, jb, -1, a[j*lda+j:], lda, a[(j+jb)*lda+j:], lda) 68 } 69 impl.Dtrti2(blas.Lower, diag, jb, a[j*lda+j:], lda) 70 } 71 return true 72 }