gonum.org/v1/gonum@v0.14.0/lapack/testlapack/dgesvd.go (about)

     1  // Copyright ©2015 The Gonum Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package testlapack
     6  
     7  import (
     8  	"fmt"
     9  	"math"
    10  	"sort"
    11  	"testing"
    12  
    13  	"golang.org/x/exp/rand"
    14  
    15  	"gonum.org/v1/gonum/blas"
    16  	"gonum.org/v1/gonum/blas/blas64"
    17  	"gonum.org/v1/gonum/floats"
    18  	"gonum.org/v1/gonum/lapack"
    19  )
    20  
    21  type Dgesvder interface {
    22  	Dgesvd(jobU, jobVT lapack.SVDJob, m, n int, a []float64, lda int, s, u []float64, ldu int, vt []float64, ldvt int, work []float64, lwork int) (ok bool)
    23  }
    24  
    25  func DgesvdTest(t *testing.T, impl Dgesvder, tol float64) {
    26  	for _, m := range []int{0, 1, 2, 3, 4, 5, 10, 150, 300} {
    27  		for _, n := range []int{0, 1, 2, 3, 4, 5, 10, 150} {
    28  			for _, mtype := range []int{1, 2, 3, 4, 5} {
    29  				dgesvdTest(t, impl, m, n, mtype, tol)
    30  			}
    31  		}
    32  	}
    33  }
    34  
    35  // dgesvdTest tests a Dgesvd implementation on an m×n matrix A generated
    36  // according to mtype as:
    37  //   - the zero matrix if mtype == 1,
    38  //   - the identity matrix if mtype == 2,
    39  //   - a random matrix with a given condition number and singular values if mtype == 3, 4, or 5.
    40  //
    41  // It first computes the full SVD  A = U*Sigma*Vᵀ  and checks that
    42  //   - U has orthonormal columns, and Vᵀ has orthonormal rows,
    43  //   - U*Sigma*Vᵀ multiply back to A,
    44  //   - the singular values are non-negative and sorted in decreasing order.
    45  //
    46  // Then all combinations of partial SVD results are computed and checked whether
    47  // they match the full SVD result.
    48  func dgesvdTest(t *testing.T, impl Dgesvder, m, n, mtype int, tol float64) {
    49  	const tolOrtho = 1e-15
    50  
    51  	rnd := rand.New(rand.NewSource(1))
    52  
    53  	// Use a fixed leading dimension to reduce testing time.
    54  	lda := n + 3
    55  	ldu := m + 5
    56  	ldvt := n + 7
    57  
    58  	minmn := min(m, n)
    59  
    60  	// Allocate A and fill it with random values. The in-range elements will
    61  	// be overwritten below according to mtype.
    62  	a := make([]float64, m*lda)
    63  	for i := range a {
    64  		a[i] = rnd.NormFloat64()
    65  	}
    66  
    67  	var aNorm float64
    68  	switch mtype {
    69  	default:
    70  		panic("unknown test matrix type")
    71  	case 1:
    72  		// Zero matrix.
    73  		for i := 0; i < m; i++ {
    74  			for j := 0; j < n; j++ {
    75  				a[i*lda+j] = 0
    76  			}
    77  		}
    78  		aNorm = 0
    79  	case 2:
    80  		// Identity matrix.
    81  		for i := 0; i < m; i++ {
    82  			for j := 0; j < n; j++ {
    83  				if i == j {
    84  					a[i*lda+i] = 1
    85  				} else {
    86  					a[i*lda+j] = 0
    87  				}
    88  			}
    89  		}
    90  		aNorm = 1
    91  	case 3, 4, 5:
    92  		// Scaled random matrix.
    93  		// Generate singular values.
    94  		s := make([]float64, minmn)
    95  		Dlatm1(s,
    96  			4,                      // s[i] = 1 - i*(1-1/cond)/(minmn-1)
    97  			float64(max(1, minmn)), // where cond = max(1,minmn)
    98  			false,                  // signs of s[i] are not randomly flipped
    99  			1, rnd)                 // random numbers are drawn uniformly from [0,1)
   100  		// Decide scale factor for the singular values based on the matrix type.
   101  		aNorm = 1
   102  		if mtype == 4 {
   103  			aNorm = smlnum
   104  		}
   105  		if mtype == 5 {
   106  			aNorm = bignum
   107  		}
   108  		// Scale singular values so that the maximum singular value is
   109  		// equal to aNorm (we know that the singular values are
   110  		// generated above to be spread linearly between 1/cond and 1).
   111  		floats.Scale(aNorm, s)
   112  		// Generate A by multiplying S by random orthogonal matrices
   113  		// from left and right.
   114  		Dlagge(m, n, max(0, m-1), max(0, n-1), s, a, lda, rnd, make([]float64, m+n))
   115  	}
   116  	aCopy := make([]float64, len(a))
   117  	copy(aCopy, a)
   118  
   119  	for _, wl := range []worklen{minimumWork, mediumWork, optimumWork} {
   120  		// Restore A because Dgesvd overwrites it.
   121  		copy(a, aCopy)
   122  
   123  		// Allocate slices that will be used below to store the results of full
   124  		// SVD and fill them.
   125  		uAll := make([]float64, m*ldu)
   126  		for i := range uAll {
   127  			uAll[i] = rnd.NormFloat64()
   128  		}
   129  		vtAll := make([]float64, n*ldvt)
   130  		for i := range vtAll {
   131  			vtAll[i] = rnd.NormFloat64()
   132  		}
   133  		sAll := make([]float64, min(m, n))
   134  		for i := range sAll {
   135  			sAll[i] = math.NaN()
   136  		}
   137  
   138  		prefix := fmt.Sprintf("m=%v,n=%v,work=%v,mtype=%v", m, n, wl, mtype)
   139  
   140  		// Determine workspace size based on wl.
   141  		minwork := max(1, max(5*min(m, n), 3*min(m, n)+max(m, n)))
   142  		var lwork int
   143  		switch wl {
   144  		case minimumWork:
   145  			lwork = minwork
   146  		case mediumWork:
   147  			work := make([]float64, 1)
   148  			impl.Dgesvd(lapack.SVDAll, lapack.SVDAll, m, n, a, lda, sAll, uAll, ldu, vtAll, ldvt, work, -1)
   149  			lwork = (int(work[0]) + minwork) / 2
   150  		case optimumWork:
   151  			work := make([]float64, 1)
   152  			impl.Dgesvd(lapack.SVDAll, lapack.SVDAll, m, n, a, lda, sAll, uAll, ldu, vtAll, ldvt, work, -1)
   153  			lwork = int(work[0])
   154  		}
   155  		work := make([]float64, max(1, lwork))
   156  		for i := range work {
   157  			work[i] = math.NaN()
   158  		}
   159  
   160  		// Compute the full SVD which will be used later for checking the partial results.
   161  		ok := impl.Dgesvd(lapack.SVDAll, lapack.SVDAll, m, n, a, lda, sAll, uAll, ldu, vtAll, ldvt, work, len(work))
   162  		if !ok {
   163  			t.Fatalf("Case %v: unexpected failure in full SVD", prefix)
   164  		}
   165  
   166  		// Check that uAll, sAll, and vtAll multiply back to A by computing a residual
   167  		//  |A - U*S*VT| / (n*aNorm)
   168  		if resid := svdFullResidual(m, n, aNorm, aCopy, lda, uAll, ldu, sAll, vtAll, ldvt); resid > tol {
   169  			t.Errorf("Case %v: original matrix not recovered for full SVD, |A - U*D*VT|=%v", prefix, resid)
   170  		}
   171  		if minmn > 0 {
   172  			// Check that uAll is orthogonal.
   173  			q := blas64.General{Rows: m, Cols: m, Data: uAll, Stride: ldu}
   174  			if resid := residualOrthogonal(q, false); resid > tolOrtho*float64(m) {
   175  				t.Errorf("Case %v: UAll is not orthogonal; resid=%v, want<=%v", prefix, resid, tolOrtho*float64(m))
   176  			}
   177  			// Check that vtAll is orthogonal.
   178  			q = blas64.General{Rows: n, Cols: n, Data: vtAll, Stride: ldvt}
   179  			if resid := residualOrthogonal(q, false); resid > tolOrtho*float64(n) {
   180  				t.Errorf("Case %v: VTAll is not orthogonal; resid=%v, want<=%v", prefix, resid, tolOrtho*float64(n))
   181  			}
   182  		}
   183  		// Check that singular values are decreasing.
   184  		if !sort.IsSorted(sort.Reverse(sort.Float64Slice(sAll))) {
   185  			t.Errorf("Case %v: singular values from full SVD are not decreasing", prefix)
   186  		}
   187  		// Check that singular values are non-negative.
   188  		if minmn > 0 && floats.Min(sAll) < 0 {
   189  			t.Errorf("Case %v: some singular values from full SVD are negative", prefix)
   190  		}
   191  
   192  		// Do partial SVD and compare the results to sAll, uAll, and vtAll.
   193  		for _, jobU := range []lapack.SVDJob{lapack.SVDAll, lapack.SVDStore, lapack.SVDOverwrite, lapack.SVDNone} {
   194  			for _, jobVT := range []lapack.SVDJob{lapack.SVDAll, lapack.SVDStore, lapack.SVDOverwrite, lapack.SVDNone} {
   195  				if jobU == lapack.SVDOverwrite || jobVT == lapack.SVDOverwrite {
   196  					// Not implemented.
   197  					continue
   198  				}
   199  				if jobU == lapack.SVDAll && jobVT == lapack.SVDAll {
   200  					// Already checked above.
   201  					continue
   202  				}
   203  
   204  				prefix := prefix + ",job=" + svdJobString(jobU) + "U-" + svdJobString(jobVT) + "VT"
   205  
   206  				// Restore A to its original values.
   207  				copy(a, aCopy)
   208  
   209  				// Allocate slices for the results of partial SVD and fill them.
   210  				u := make([]float64, m*ldu)
   211  				for i := range u {
   212  					u[i] = rnd.NormFloat64()
   213  				}
   214  				vt := make([]float64, n*ldvt)
   215  				for i := range vt {
   216  					vt[i] = rnd.NormFloat64()
   217  				}
   218  				s := make([]float64, min(m, n))
   219  				for i := range s {
   220  					s[i] = math.NaN()
   221  				}
   222  
   223  				for i := range work {
   224  					work[i] = math.NaN()
   225  				}
   226  
   227  				ok := impl.Dgesvd(jobU, jobVT, m, n, a, lda, s, u, ldu, vt, ldvt, work, len(work))
   228  				if !ok {
   229  					t.Fatalf("Case %v: unexpected failure in partial Dgesvd", prefix)
   230  				}
   231  
   232  				if minmn == 0 {
   233  					// No panic and the result is ok, there is
   234  					// nothing else to check.
   235  					continue
   236  				}
   237  
   238  				// Check that U has orthogonal columns and that it matches UAll.
   239  				switch jobU {
   240  				case lapack.SVDStore:
   241  					q := blas64.General{Rows: m, Cols: minmn, Data: u, Stride: ldu}
   242  					if resid := residualOrthogonal(q, false); resid > tolOrtho*float64(m) {
   243  						t.Errorf("Case %v: columns of U are not orthogonal; resid=%v, want<=%v", prefix, resid, tolOrtho*float64(m))
   244  					}
   245  					if res := svdPartialUResidual(m, minmn, u, uAll, ldu); res > tol {
   246  						t.Errorf("Case %v: columns of U do not match UAll", prefix)
   247  					}
   248  				case lapack.SVDAll:
   249  					q := blas64.General{Rows: m, Cols: m, Data: u, Stride: ldu}
   250  					if resid := residualOrthogonal(q, false); resid > tolOrtho*float64(m) {
   251  						t.Errorf("Case %v: columns of U are not orthogonal; resid=%v, want<=%v", prefix, resid, tolOrtho*float64(m))
   252  					}
   253  					if res := svdPartialUResidual(m, m, u, uAll, ldu); res > tol {
   254  						t.Errorf("Case %v: columns of U do not match UAll", prefix)
   255  					}
   256  				}
   257  				// Check that VT has orthogonal rows and that it matches VTAll.
   258  				switch jobVT {
   259  				case lapack.SVDStore:
   260  					q := blas64.General{Rows: minmn, Cols: n, Data: vtAll, Stride: ldvt}
   261  					if resid := residualOrthogonal(q, true); resid > tolOrtho*float64(n) {
   262  						t.Errorf("Case %v: rows of VT are not orthogonal; resid=%v, want<=%v", prefix, resid, tolOrtho*float64(n))
   263  					}
   264  					if res := svdPartialVTResidual(minmn, n, vt, vtAll, ldvt); res > tol {
   265  						t.Errorf("Case %v: rows of VT do not match VTAll", prefix)
   266  					}
   267  				case lapack.SVDAll:
   268  					q := blas64.General{Rows: n, Cols: n, Data: vtAll, Stride: ldvt}
   269  					if resid := residualOrthogonal(q, true); resid > tolOrtho*float64(n) {
   270  						t.Errorf("Case %v: rows of VT are not orthogonal; resid=%v, want<=%v", prefix, resid, tolOrtho*float64(n))
   271  					}
   272  					if res := svdPartialVTResidual(n, n, vt, vtAll, ldvt); res > tol {
   273  						t.Errorf("Case %v: rows of VT do not match VTAll", prefix)
   274  					}
   275  				}
   276  				// Check that singular values are decreasing.
   277  				if !sort.IsSorted(sort.Reverse(sort.Float64Slice(s))) {
   278  					t.Errorf("Case %v: singular values from full SVD are not decreasing", prefix)
   279  				}
   280  				// Check that singular values are non-negative.
   281  				if floats.Min(s) < 0 {
   282  					t.Errorf("Case %v: some singular values from full SVD are negative", prefix)
   283  				}
   284  				if !floats.EqualApprox(s, sAll, tol/10) {
   285  					t.Errorf("Case %v: singular values differ between full and partial SVD\n%v\n%v", prefix, s, sAll)
   286  				}
   287  			}
   288  		}
   289  	}
   290  }
   291  
   292  // svdFullResidual returns
   293  //
   294  //	|A - U*D*VT| / (n * aNorm)
   295  //
   296  // where U, D, and VT are as computed by Dgesvd with jobU = jobVT = lapack.SVDAll.
   297  func svdFullResidual(m, n int, aNorm float64, a []float64, lda int, u []float64, ldu int, d []float64, vt []float64, ldvt int) float64 {
   298  	// The implementation follows TESTING/dbdt01.f from the reference.
   299  
   300  	minmn := min(m, n)
   301  	if minmn == 0 {
   302  		return 0
   303  	}
   304  
   305  	// j-th column of A - U*D*VT.
   306  	aMinusUDVT := make([]float64, m)
   307  	// D times the j-th column of VT.
   308  	dvt := make([]float64, minmn)
   309  	// Compute the residual |A - U*D*VT| one column at a time.
   310  	var resid float64
   311  	for j := 0; j < n; j++ {
   312  		// Copy j-th column of A to aj.
   313  		blas64.Copy(blas64.Vector{N: m, Data: a[j:], Inc: lda}, blas64.Vector{N: m, Data: aMinusUDVT, Inc: 1})
   314  		// Multiply D times j-th column of VT.
   315  		for i := 0; i < minmn; i++ {
   316  			dvt[i] = d[i] * vt[i*ldvt+j]
   317  		}
   318  		// Compute the j-th column of A - U*D*VT.
   319  		blas64.Gemv(blas.NoTrans,
   320  			-1, blas64.General{Rows: m, Cols: minmn, Data: u, Stride: ldu}, blas64.Vector{N: minmn, Data: dvt, Inc: 1},
   321  			1, blas64.Vector{N: m, Data: aMinusUDVT, Inc: 1})
   322  		resid = math.Max(resid, blas64.Asum(blas64.Vector{N: m, Data: aMinusUDVT, Inc: 1}))
   323  	}
   324  	if aNorm == 0 {
   325  		if resid != 0 {
   326  			// Original matrix A is zero but the residual is non-zero,
   327  			// return infinity.
   328  			return math.Inf(1)
   329  		}
   330  		// Original matrix A is zero, residual is zero, return 0.
   331  		return 0
   332  	}
   333  	// Original matrix A is non-zero.
   334  	if aNorm >= resid {
   335  		resid = resid / aNorm / float64(n)
   336  	} else {
   337  		if aNorm < 1 {
   338  			resid = math.Min(resid, float64(n)*aNorm) / aNorm / float64(n)
   339  		} else {
   340  			resid = math.Min(resid/aNorm, float64(n)) / float64(n)
   341  		}
   342  	}
   343  	return resid
   344  }
   345  
   346  // svdPartialUResidual compares U and URef to see if their columns span the same
   347  // spaces. It returns the maximum over columns of
   348  //
   349  //	|URef(i) - S*U(i)|
   350  //
   351  // where URef(i) and U(i) are the i-th columns of URef and U, respectively, and
   352  // S is ±1 chosen to minimize the expression.
   353  func svdPartialUResidual(m, n int, u, uRef []float64, ldu int) float64 {
   354  	var res float64
   355  	for j := 0; j < n; j++ {
   356  		imax := blas64.Iamax(blas64.Vector{N: m, Data: uRef[j:], Inc: ldu})
   357  		s := math.Copysign(1, uRef[imax*ldu+j]) * math.Copysign(1, u[imax*ldu+j])
   358  		for i := 0; i < m; i++ {
   359  			diff := math.Abs(uRef[i*ldu+j] - s*u[i*ldu+j])
   360  			res = math.Max(res, diff)
   361  		}
   362  	}
   363  	return res
   364  }
   365  
   366  // svdPartialVTResidual compares VT and VTRef to see if their rows span the same
   367  // spaces. It returns the maximum over rows of
   368  //
   369  //	|VTRef(i) - S*VT(i)|
   370  //
   371  // where VTRef(i) and VT(i) are the i-th columns of VTRef and VT, respectively, and
   372  // S is ±1 chosen to minimize the expression.
   373  func svdPartialVTResidual(m, n int, vt, vtRef []float64, ldvt int) float64 {
   374  	var res float64
   375  	for i := 0; i < m; i++ {
   376  		jmax := blas64.Iamax(blas64.Vector{N: n, Data: vtRef[i*ldvt:], Inc: 1})
   377  		s := math.Copysign(1, vtRef[i*ldvt+jmax]) * math.Copysign(1, vt[i*ldvt+jmax])
   378  		for j := 0; j < n; j++ {
   379  			diff := math.Abs(vtRef[i*ldvt+j] - s*vt[i*ldvt+j])
   380  			res = math.Max(res, diff)
   381  		}
   382  	}
   383  	return res
   384  }