gonum.org/v1/gonum@v0.14.0/lapack/testlapack/dgetf2.go (about) 1 // Copyright ©2015 The Gonum Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package testlapack 6 7 import ( 8 "testing" 9 10 "golang.org/x/exp/rand" 11 12 "gonum.org/v1/gonum/blas" 13 "gonum.org/v1/gonum/blas/blas64" 14 "gonum.org/v1/gonum/floats" 15 ) 16 17 type Dgetf2er interface { 18 Dgetf2(m, n int, a []float64, lda int, ipiv []int) bool 19 } 20 21 func Dgetf2Test(t *testing.T, impl Dgetf2er) { 22 rnd := rand.New(rand.NewSource(1)) 23 for _, test := range []struct { 24 m, n, lda int 25 }{ 26 {10, 10, 0}, 27 {10, 5, 0}, 28 {10, 5, 0}, 29 30 {10, 10, 20}, 31 {5, 10, 20}, 32 {10, 5, 20}, 33 } { 34 m := test.m 35 n := test.n 36 lda := test.lda 37 if lda == 0 { 38 lda = n 39 } 40 a := make([]float64, m*lda) 41 for i := range a { 42 a[i] = rnd.Float64() 43 } 44 aCopy := make([]float64, len(a)) 45 copy(aCopy, a) 46 47 mn := min(m, n) 48 ipiv := make([]int, mn) 49 for i := range ipiv { 50 ipiv[i] = rnd.Int() 51 } 52 ok := impl.Dgetf2(m, n, a, lda, ipiv) 53 checkPLU(t, ok, m, n, lda, ipiv, a, aCopy, 1e-14, true) 54 } 55 56 // Test with singular matrices (random matrices are almost surely non-singular). 57 for _, test := range []struct { 58 m, n, lda int 59 a []float64 60 }{ 61 { 62 m: 2, 63 n: 2, 64 lda: 2, 65 a: []float64{ 66 1, 0, 67 0, 0, 68 }, 69 }, 70 { 71 m: 2, 72 n: 2, 73 lda: 2, 74 a: []float64{ 75 1, 5, 76 2, 10, 77 }, 78 }, 79 { 80 m: 3, 81 n: 3, 82 lda: 3, 83 // row 3 = row1 + 2 * row2 84 a: []float64{ 85 1, 5, 7, 86 2, 10, -3, 87 5, 25, 1, 88 }, 89 }, 90 { 91 m: 3, 92 n: 4, 93 lda: 4, 94 // row 3 = row1 + 2 * row2 95 a: []float64{ 96 1, 5, 7, 9, 97 2, 10, -3, 11, 98 5, 25, 1, 31, 99 }, 100 }, 101 } { 102 if impl.Dgetf2(test.m, test.n, test.a, test.lda, make([]int, min(test.m, test.n))) { 103 t.Log("Returned ok with singular matrix.") 104 } 105 } 106 } 107 108 // checkPLU checks that the PLU factorization contained in factorize matches 109 // the original matrix contained in original. 110 func checkPLU(t *testing.T, ok bool, m, n, lda int, ipiv []int, factorized, original []float64, tol float64, print bool) { 111 var hasZeroDiagonal bool 112 for i := 0; i < min(m, n); i++ { 113 if factorized[i*lda+i] == 0 { 114 hasZeroDiagonal = true 115 break 116 } 117 } 118 if hasZeroDiagonal && ok { 119 t.Error("Has a zero diagonal but returned ok") 120 } 121 if !hasZeroDiagonal && !ok { 122 t.Error("Non-zero diagonal but returned !ok") 123 } 124 125 // Check that the LU decomposition is correct. 126 mn := min(m, n) 127 l := make([]float64, m*mn) 128 ldl := mn 129 u := make([]float64, mn*n) 130 ldu := n 131 for i := 0; i < m; i++ { 132 for j := 0; j < n; j++ { 133 v := factorized[i*lda+j] 134 switch { 135 case i == j: 136 l[i*ldl+i] = 1 137 u[i*ldu+i] = v 138 case i > j: 139 l[i*ldl+j] = v 140 case i < j: 141 u[i*ldu+j] = v 142 } 143 } 144 } 145 146 LU := blas64.General{ 147 Rows: m, 148 Cols: n, 149 Stride: n, 150 Data: make([]float64, m*n), 151 } 152 U := blas64.General{ 153 Rows: mn, 154 Cols: n, 155 Stride: ldu, 156 Data: u, 157 } 158 L := blas64.General{ 159 Rows: m, 160 Cols: mn, 161 Stride: ldl, 162 Data: l, 163 } 164 blas64.Gemm(blas.NoTrans, blas.NoTrans, 1, L, U, 0, LU) 165 166 p := make([]float64, m*m) 167 ldp := m 168 for i := 0; i < m; i++ { 169 p[i*ldp+i] = 1 170 } 171 for i := len(ipiv) - 1; i >= 0; i-- { 172 v := ipiv[i] 173 blas64.Swap(blas64.Vector{N: m, Inc: 1, Data: p[i*ldp:]}, 174 blas64.Vector{N: m, Inc: 1, Data: p[v*ldp:]}) 175 } 176 P := blas64.General{ 177 Rows: m, 178 Cols: m, 179 Stride: m, 180 Data: p, 181 } 182 aComp := blas64.General{ 183 Rows: m, 184 Cols: n, 185 Stride: lda, 186 Data: make([]float64, m*lda), 187 } 188 copy(aComp.Data, factorized) 189 blas64.Gemm(blas.NoTrans, blas.NoTrans, 1, P, LU, 0, aComp) 190 if !floats.EqualApprox(aComp.Data, original, tol) { 191 if print { 192 t.Errorf("PLU multiplication does not match original matrix.\nWant: %v\nGot: %v", original, aComp.Data) 193 return 194 } 195 t.Error("PLU multiplication does not match original matrix.") 196 } 197 }