gonum.org/v1/gonum@v0.14.0/lapack/testlapack/dlanv2.go (about) 1 // Copyright ©2016 The Gonum Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package testlapack 6 7 import ( 8 "fmt" 9 "math" 10 "testing" 11 12 "golang.org/x/exp/rand" 13 ) 14 15 type Dlanv2er interface { 16 Dlanv2(a, b, c, d float64) (aa, bb, cc, dd float64, rt1r, rt1i, rt2r, rt2i float64, cs, sn float64) 17 } 18 19 func Dlanv2Test(t *testing.T, impl Dlanv2er) { 20 rnd := rand.New(rand.NewSource(1)) 21 t.Run("UpperTriangular", func(t *testing.T) { 22 for i := 0; i < 10; i++ { 23 a := rnd.NormFloat64() 24 b := rnd.NormFloat64() 25 d := rnd.NormFloat64() 26 dlanv2Test(t, impl, a, b, 0, d) 27 } 28 }) 29 t.Run("LowerTriangular", func(t *testing.T) { 30 for i := 0; i < 10; i++ { 31 a := rnd.NormFloat64() 32 c := rnd.NormFloat64() 33 d := rnd.NormFloat64() 34 dlanv2Test(t, impl, a, 0, c, d) 35 } 36 }) 37 t.Run("StandardSchur", func(t *testing.T) { 38 for i := 0; i < 10; i++ { 39 a := rnd.NormFloat64() 40 b := rnd.NormFloat64() 41 c := rnd.NormFloat64() 42 if math.Signbit(b) == math.Signbit(c) { 43 c = -c 44 } 45 dlanv2Test(t, impl, a, b, c, a) 46 } 47 }) 48 t.Run("General", func(t *testing.T) { 49 for i := 0; i < 100; i++ { 50 a := rnd.NormFloat64() 51 b := rnd.NormFloat64() 52 c := rnd.NormFloat64() 53 d := rnd.NormFloat64() 54 dlanv2Test(t, impl, a, b, c, d) 55 } 56 57 // https://github.com/Reference-LAPACK/lapack/issues/263 58 dlanv2Test(t, impl, 0, 1, -1, math.Nextafter(0, 1)) 59 }) 60 } 61 62 func dlanv2Test(t *testing.T, impl Dlanv2er, a, b, c, d float64) { 63 aa, bb, cc, dd, rt1r, rt1i, rt2r, rt2i, cs, sn := impl.Dlanv2(a, b, c, d) 64 65 mat := fmt.Sprintf("[%v %v; %v %v]", a, b, c, d) 66 if cc == 0 { 67 // The eigenvalues are real, so check that the imaginary parts 68 // are zero. 69 if rt1i != 0 || rt2i != 0 { 70 t.Errorf("Unexpected complex eigenvalues for %v", mat) 71 } 72 } else { 73 // The eigenvalues are complex, so check that documented 74 // conditions hold. 75 if aa != dd { 76 t.Errorf("Diagonal elements not equal for %v: got [%v %v]", mat, aa, dd) 77 } 78 if bb*cc >= 0 { 79 t.Errorf("Non-diagonal elements have the same sign for %v: got [%v %v]", mat, bb, cc) 80 } else { 81 // Compute the absolute value of the imaginary part. 82 im := math.Sqrt(-bb * cc) 83 // Check that ±im is close to one of the returned 84 // imaginary parts. 85 if math.Abs(rt1i-im) > 1e-14 && math.Abs(rt1i+im) > 1e-14 { 86 t.Errorf("Unexpected imaginary part of eigenvalue for %v: got %v, want %v or %v", mat, rt1i, im, -im) 87 } 88 if math.Abs(rt2i-im) > 1e-14 && math.Abs(rt2i+im) > 1e-14 { 89 t.Errorf("Unexpected imaginary part of eigenvalue for %v: got %v, want %v or %v", mat, rt2i, im, -im) 90 } 91 } 92 } 93 // Check that the returned real parts are consistent. 94 if rt1r != aa && rt1r != dd { 95 t.Errorf("Unexpected real part of eigenvalue for %v: got %v, want %v or %v", mat, rt1r, aa, dd) 96 } 97 if rt2r != aa && rt2r != dd { 98 t.Errorf("Unexpected real part of eigenvalue for %v: got %v, want %v or %v", mat, rt2r, aa, dd) 99 } 100 // Check that the columns of the orthogonal matrix have unit norm. 101 if math.Abs(math.Hypot(cs, sn)-1) > 1e-14 { 102 t.Errorf("Unexpected unitary matrix for %v: got cs %v, sn %v", mat, cs, sn) 103 } 104 105 // Re-compute the original matrix [a b; c d] from its factorization. 106 gota := cs*(aa*cs-bb*sn) - sn*(cc*cs-dd*sn) 107 gotb := cs*(aa*sn+bb*cs) - sn*(cc*sn+dd*cs) 108 gotc := sn*(aa*cs-bb*sn) + cs*(cc*cs-dd*sn) 109 gotd := sn*(aa*sn+bb*cs) + cs*(cc*sn+dd*cs) 110 if math.Abs(gota-a) > 1e-14 || 111 math.Abs(gotb-b) > 1e-14 || 112 math.Abs(gotc-c) > 1e-14 || 113 math.Abs(gotd-d) > 1e-14 { 114 t.Errorf("Unexpected factorization: got [%v %v; %v %v], want [%v %v; %v %v]", gota, gotb, gotc, gotd, a, b, c, d) 115 } 116 }