gonum.org/v1/gonum@v0.14.0/mathext/gamma_inc_inv.go (about) 1 // Derived from SciPy's special/c_misc/gammaincinv.c 2 // https://github.com/scipy/scipy/blob/master/scipy/special/c_misc/gammaincinv.c 3 4 // Copyright ©2017 The Gonum Authors. All rights reserved. 5 // Use of this source code is governed by a BSD-style 6 // license that can be found in the LICENSE file. 7 8 package mathext 9 10 import ( 11 "math" 12 13 "gonum.org/v1/gonum/mathext/internal/cephes" 14 ) 15 16 const ( 17 allowedATol = 1e-306 18 allowedRTol = 1e-6 19 ) 20 21 func gammaIncReg(x float64, params []float64) float64 { 22 return cephes.Igam(params[0], x) - params[1] 23 } 24 25 // gammaIncRegInv is the inverse of the regularized incomplete Gamma integral. That is, it 26 // returns x such that: 27 // 28 // Igam(a, x) = y 29 // 30 // The input argument a must be positive and y must be between 0 and 1 31 // inclusive or gammaIncRegInv will panic. gammaIncRegInv should return a 32 // positive number, but can return NaN if there is a failure to converge. 33 func gammaIncRegInv(a, y float64) float64 { 34 // For y not small, we just use 35 // IgamI(a, 1-y) 36 // (inverse of the complemented incomplete Gamma integral). For y small, 37 // however, 1-y is about 1, and we lose digits. 38 if a <= 0 || y <= 0 || y >= 0.25 { 39 return cephes.IgamI(a, 1-y) 40 } 41 42 lo := 0.0 43 flo := -y 44 hi := cephes.IgamI(a, 0.75) 45 fhi := 0.25 - y 46 47 params := []float64{a, y} 48 49 // Also, after we generate a small interval by bisection above, false 50 // position will do a large step from an interval of width ~1e-4 to ~1e-14 51 // in one step (a=10, x=0.05, but similar for other values). 52 result, bestX, _, errEst := falsePosition(lo, hi, flo, fhi, 2*machEp, 2*machEp, 1e-2*a, gammaIncReg, params) 53 if result == fSolveMaxIterations && errEst > allowedATol+allowedRTol*math.Abs(bestX) { 54 bestX = math.NaN() 55 } 56 57 return bestX 58 }