gonum.org/v1/gonum@v0.14.0/mathext/internal/amos/amoslib/zbesh.f (about)

     1        SUBROUTINE ZBESH(ZR, ZI, FNU, KODE, M, N, CYR, CYI, NZ, IERR)
     2  C***BEGIN PROLOGUE  ZBESH
     3  C***DATE WRITTEN   830501   (YYMMDD)
     4  C***REVISION DATE  890801   (YYMMDD)
     5  C***CATEGORY NO.  B5K
     6  C***KEYWORDS  H-BESSEL FUNCTIONS,BESSEL FUNCTIONS OF COMPLEX ARGUMENT,
     7  C             BESSEL FUNCTIONS OF THIRD KIND,HANKEL FUNCTIONS
     8  C***AUTHOR  AMOS, DONALD E., SANDIA NATIONAL LABORATORIES
     9  C***PURPOSE  TO COMPUTE THE H-BESSEL FUNCTIONS OF A COMPLEX ARGUMENT
    10  C***DESCRIPTION
    11  C
    12  C                      ***A DOUBLE PRECISION ROUTINE***
    13  C         ON KODE=1, ZBESH COMPUTES AN N MEMBER SEQUENCE OF COMPLEX
    14  C         HANKEL (BESSEL) FUNCTIONS CY(J)=H(M,FNU+J-1,Z) FOR KINDS M=1
    15  C         OR 2, REAL, NONNEGATIVE ORDERS FNU+J-1, J=1,...,N, AND COMPLEX
    16  C         Z.NE.CMPLX(0.0,0.0) IN THE CUT PLANE -PI.LT.ARG(Z).LE.PI.
    17  C         ON KODE=2, ZBESH RETURNS THE SCALED HANKEL FUNCTIONS
    18  C
    19  C         CY(I)=EXP(-MM*Z*I)*H(M,FNU+J-1,Z)       MM=3-2*M,   I**2=-1.
    20  C
    21  C         WHICH REMOVES THE EXPONENTIAL BEHAVIOR IN BOTH THE UPPER AND
    22  C         LOWER HALF PLANES. DEFINITIONS AND NOTATION ARE FOUND IN THE
    23  C         NBS HANDBOOK OF MATHEMATICAL FUNCTIONS (REF. 1).
    24  C
    25  C         INPUT      ZR,ZI,FNU ARE DOUBLE PRECISION
    26  C           ZR,ZI  - Z=CMPLX(ZR,ZI), Z.NE.CMPLX(0.0D0,0.0D0),
    27  C                    -PT.LT.ARG(Z).LE.PI
    28  C           FNU    - ORDER OF INITIAL H FUNCTION, FNU.GE.0.0D0
    29  C           KODE   - A PARAMETER TO INDICATE THE SCALING OPTION
    30  C                    KODE= 1  RETURNS
    31  C                             CY(J)=H(M,FNU+J-1,Z),   J=1,...,N
    32  C                        = 2  RETURNS
    33  C                             CY(J)=H(M,FNU+J-1,Z)*EXP(-I*Z*(3-2M))
    34  C                                  J=1,...,N  ,  I**2=-1
    35  C           M      - KIND OF HANKEL FUNCTION, M=1 OR 2
    36  C           N      - NUMBER OF MEMBERS IN THE SEQUENCE, N.GE.1
    37  C
    38  C         OUTPUT     CYR,CYI ARE DOUBLE PRECISION
    39  C           CYR,CYI- DOUBLE PRECISION VECTORS WHOSE FIRST N COMPONENTS
    40  C                    CONTAIN REAL AND IMAGINARY PARTS FOR THE SEQUENCE
    41  C                    CY(J)=H(M,FNU+J-1,Z)  OR
    42  C                    CY(J)=H(M,FNU+J-1,Z)*EXP(-I*Z*(3-2M))  J=1,...,N
    43  C                    DEPENDING ON KODE, I**2=-1.
    44  C           NZ     - NUMBER OF COMPONENTS SET TO ZERO DUE TO UNDERFLOW,
    45  C                    NZ= 0   , NORMAL RETURN
    46  C                    NZ.GT.0 , FIRST NZ COMPONENTS OF CY SET TO ZERO DUE
    47  C                              TO UNDERFLOW, CY(J)=CMPLX(0.0D0,0.0D0)
    48  C                              J=1,...,NZ WHEN Y.GT.0.0 AND M=1 OR
    49  C                              Y.LT.0.0 AND M=2. FOR THE COMPLMENTARY
    50  C                              HALF PLANES, NZ STATES ONLY THE NUMBER
    51  C                              OF UNDERFLOWS.
    52  C           IERR   - ERROR FLAG
    53  C                    IERR=0, NORMAL RETURN - COMPUTATION COMPLETED
    54  C                    IERR=1, INPUT ERROR   - NO COMPUTATION
    55  C                    IERR=2, OVERFLOW      - NO COMPUTATION, FNU TOO
    56  C                            LARGE OR CABS(Z) TOO SMALL OR BOTH
    57  C                    IERR=3, CABS(Z) OR FNU+N-1 LARGE - COMPUTATION DONE
    58  C                            BUT LOSSES OF SIGNIFCANCE BY ARGUMENT
    59  C                            REDUCTION PRODUCE LESS THAN HALF OF MACHINE
    60  C                            ACCURACY
    61  C                    IERR=4, CABS(Z) OR FNU+N-1 TOO LARGE - NO COMPUTA-
    62  C                            TION BECAUSE OF COMPLETE LOSSES OF SIGNIFI-
    63  C                            CANCE BY ARGUMENT REDUCTION
    64  C                    IERR=5, ERROR              - NO COMPUTATION,
    65  C                            ALGORITHM TERMINATION CONDITION NOT MET
    66  C
    67  C***LONG DESCRIPTION
    68  C
    69  C         THE COMPUTATION IS CARRIED OUT BY THE RELATION
    70  C
    71  C         H(M,FNU,Z)=(1/MP)*EXP(-MP*FNU)*K(FNU,Z*EXP(-MP))
    72  C             MP=MM*HPI*I,  MM=3-2*M,  HPI=PI/2,  I**2=-1
    73  C
    74  C         FOR M=1 OR 2 WHERE THE K BESSEL FUNCTION IS COMPUTED FOR THE
    75  C         RIGHT HALF PLANE RE(Z).GE.0.0. THE K FUNCTION IS CONTINUED
    76  C         TO THE LEFT HALF PLANE BY THE RELATION
    77  C
    78  C         K(FNU,Z*EXP(MP)) = EXP(-MP*FNU)*K(FNU,Z)-MP*I(FNU,Z)
    79  C         MP=MR*PI*I, MR=+1 OR -1, RE(Z).GT.0, I**2=-1
    80  C
    81  C         WHERE I(FNU,Z) IS THE I BESSEL FUNCTION.
    82  C
    83  C         EXPONENTIAL DECAY OF H(M,FNU,Z) OCCURS IN THE UPPER HALF Z
    84  C         PLANE FOR M=1 AND THE LOWER HALF Z PLANE FOR M=2.  EXPONENTIAL
    85  C         GROWTH OCCURS IN THE COMPLEMENTARY HALF PLANES.  SCALING
    86  C         BY EXP(-MM*Z*I) REMOVES THE EXPONENTIAL BEHAVIOR IN THE
    87  C         WHOLE Z PLANE FOR Z TO INFINITY.
    88  C
    89  C         FOR NEGATIVE ORDERS,THE FORMULAE
    90  C
    91  C               H(1,-FNU,Z) = H(1,FNU,Z)*CEXP( PI*FNU*I)
    92  C               H(2,-FNU,Z) = H(2,FNU,Z)*CEXP(-PI*FNU*I)
    93  C                         I**2=-1
    94  C
    95  C         CAN BE USED.
    96  C
    97  C         IN MOST COMPLEX VARIABLE COMPUTATION, ONE MUST EVALUATE ELE-
    98  C         MENTARY FUNCTIONS. WHEN THE MAGNITUDE OF Z OR FNU+N-1 IS
    99  C         LARGE, LOSSES OF SIGNIFICANCE BY ARGUMENT REDUCTION OCCUR.
   100  C         CONSEQUENTLY, IF EITHER ONE EXCEEDS U1=SQRT(0.5/UR), THEN
   101  C         LOSSES EXCEEDING HALF PRECISION ARE LIKELY AND AN ERROR FLAG
   102  C         IERR=3 IS TRIGGERED WHERE UR=DMAX1(D1MACH(4),1.0D-18) IS
   103  C         DOUBLE PRECISION UNIT ROUNDOFF LIMITED TO 18 DIGITS PRECISION.
   104  C         IF EITHER IS LARGER THAN U2=0.5/UR, THEN ALL SIGNIFICANCE IS
   105  C         LOST AND IERR=4. IN ORDER TO USE THE INT FUNCTION, ARGUMENTS
   106  C         MUST BE FURTHER RESTRICTED NOT TO EXCEED THE LARGEST MACHINE
   107  C         INTEGER, U3=I1MACH(9). THUS, THE MAGNITUDE OF Z AND FNU+N-1 IS
   108  C         RESTRICTED BY MIN(U2,U3). ON 32 BIT MACHINES, U1,U2, AND U3
   109  C         ARE APPROXIMATELY 2.0E+3, 4.2E+6, 2.1E+9 IN SINGLE PRECISION
   110  C         ARITHMETIC AND 1.3E+8, 1.8E+16, 2.1E+9 IN DOUBLE PRECISION
   111  C         ARITHMETIC RESPECTIVELY. THIS MAKES U2 AND U3 LIMITING IN
   112  C         THEIR RESPECTIVE ARITHMETICS. THIS MEANS THAT ONE CAN EXPECT
   113  C         TO RETAIN, IN THE WORST CASES ON 32 BIT MACHINES, NO DIGITS
   114  C         IN SINGLE AND ONLY 7 DIGITS IN DOUBLE PRECISION ARITHMETIC.
   115  C         SIMILAR CONSIDERATIONS HOLD FOR OTHER MACHINES.
   116  C
   117  C         THE APPROXIMATE RELATIVE ERROR IN THE MAGNITUDE OF A COMPLEX
   118  C         BESSEL FUNCTION CAN BE EXPRESSED BY P*10**S WHERE P=MAX(UNIT
   119  C         ROUNDOFF,1.0D-18) IS THE NOMINAL PRECISION AND 10**S REPRE-
   120  C         SENTS THE INCREASE IN ERROR DUE TO ARGUMENT REDUCTION IN THE
   121  C         ELEMENTARY FUNCTIONS. HERE, S=MAX(1,ABS(LOG10(CABS(Z))),
   122  C         ABS(LOG10(FNU))) APPROXIMATELY (I.E. S=MAX(1,ABS(EXPONENT OF
   123  C         CABS(Z),ABS(EXPONENT OF FNU)) ). HOWEVER, THE PHASE ANGLE MAY
   124  C         HAVE ONLY ABSOLUTE ACCURACY. THIS IS MOST LIKELY TO OCCUR WHEN
   125  C         ONE COMPONENT (IN ABSOLUTE VALUE) IS LARGER THAN THE OTHER BY
   126  C         SEVERAL ORDERS OF MAGNITUDE. IF ONE COMPONENT IS 10**K LARGER
   127  C         THAN THE OTHER, THEN ONE CAN EXPECT ONLY MAX(ABS(LOG10(P))-K,
   128  C         0) SIGNIFICANT DIGITS; OR, STATED ANOTHER WAY, WHEN K EXCEEDS
   129  C         THE EXPONENT OF P, NO SIGNIFICANT DIGITS REMAIN IN THE SMALLER
   130  C         COMPONENT. HOWEVER, THE PHASE ANGLE RETAINS ABSOLUTE ACCURACY
   131  C         BECAUSE, IN COMPLEX ARITHMETIC WITH PRECISION P, THE SMALLER
   132  C         COMPONENT WILL NOT (AS A RULE) DECREASE BELOW P TIMES THE
   133  C         MAGNITUDE OF THE LARGER COMPONENT. IN THESE EXTREME CASES,
   134  C         THE PRINCIPAL PHASE ANGLE IS ON THE ORDER OF +P, -P, PI/2-P,
   135  C         OR -PI/2+P.
   136  C
   137  C***REFERENCES  HANDBOOK OF MATHEMATICAL FUNCTIONS BY M. ABRAMOWITZ
   138  C                 AND I. A. STEGUN, NBS AMS SERIES 55, U.S. DEPT. OF
   139  C                 COMMERCE, 1955.
   140  C
   141  C               COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
   142  C                 BY D. E. AMOS, SAND83-0083, MAY, 1983.
   143  C
   144  C               COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
   145  C                 AND LARGE ORDER BY D. E. AMOS, SAND83-0643, MAY, 1983
   146  C
   147  C               A SUBROUTINE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
   148  C                 ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, SAND85-
   149  C                 1018, MAY, 1985
   150  C
   151  C               A PORTABLE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
   152  C                 ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, TRANS.
   153  C                 MATH. SOFTWARE, 1986
   154  C
   155  C***ROUTINES CALLED  ZACON,ZBKNU,ZBUNK,ZUOIK,ZABS,I1MACH,D1MACH
   156  C***END PROLOGUE  ZBESH
   157  C
   158  C     COMPLEX CY,Z,ZN,ZT,CSGN
   159        DOUBLE PRECISION AA, ALIM, ALN, ARG, AZ, CYI, CYR, DIG, ELIM,
   160       * FMM, FN, FNU, FNUL, HPI, RHPI, RL, R1M5, SGN, STR, TOL, UFL, ZI,
   161       * ZNI, ZNR, ZR, ZTI, D1MACH, ZABS, BB, ASCLE, RTOL, ATOL, STI,
   162       * CSGNR, CSGNI
   163        INTEGER I, IERR, INU, INUH, IR, K, KODE, K1, K2, M,
   164       * MM, MR, N, NN, NUF, NW, NZ, I1MACH
   165        DIMENSION CYR(N), CYI(N)
   166  C
   167        DATA HPI /1.57079632679489662D0/
   168  C
   169  C***FIRST EXECUTABLE STATEMENT  ZBESH
   170        IERR = 0
   171        NZ=0
   172        IF (ZR.EQ.0.0D0 .AND. ZI.EQ.0.0D0) IERR=1
   173        IF (FNU.LT.0.0D0) IERR=1
   174        IF (M.LT.1 .OR. M.GT.2) IERR=1
   175        IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1
   176        IF (N.LT.1) IERR=1
   177        IF (IERR.NE.0) RETURN
   178        NN = N
   179  C-----------------------------------------------------------------------
   180  C     SET PARAMETERS RELATED TO MACHINE CONSTANTS.
   181  C     TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0E-18.
   182  C     ELIM IS THE APPROXIMATE EXPONENTIAL OVER- AND UNDERFLOW LIMIT.
   183  C     EXP(-ELIM).LT.EXP(-ALIM)=EXP(-ELIM)/TOL    AND
   184  C     EXP(ELIM).GT.EXP(ALIM)=EXP(ELIM)*TOL       ARE INTERVALS NEAR
   185  C     UNDERFLOW AND OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE.
   186  C     RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LARGE Z.
   187  C     DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG).
   188  C     FNUL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC SERIES FOR LARGE FNU
   189  C-----------------------------------------------------------------------
   190        TOL = DMAX1(D1MACH(4),1.0D-18)
   191        K1 = I1MACH(15)
   192        K2 = I1MACH(16)
   193        R1M5 = D1MACH(5)
   194        K = MIN0(IABS(K1),IABS(K2))
   195        ELIM = 2.303D0*(DBLE(FLOAT(K))*R1M5-3.0D0)
   196        K1 = I1MACH(14) - 1
   197        AA = R1M5*DBLE(FLOAT(K1))
   198        DIG = DMIN1(AA,18.0D0)
   199        AA = AA*2.303D0
   200        ALIM = ELIM + DMAX1(-AA,-41.45D0)
   201        FNUL = 10.0D0 + 6.0D0*(DIG-3.0D0)
   202        RL = 1.2D0*DIG + 3.0D0
   203        FN = FNU + DBLE(FLOAT(NN-1))
   204        MM = 3 - M - M
   205        FMM = DBLE(FLOAT(MM))
   206        ZNR = FMM*ZI
   207        ZNI = -FMM*ZR
   208  C-----------------------------------------------------------------------
   209  C     TEST FOR PROPER RANGE
   210  C-----------------------------------------------------------------------
   211        AZ = ZABS(CMPLX(ZR,ZI,kind=KIND(1.0D0)))
   212        AA = 0.5D0/TOL
   213        BB=DBLE(FLOAT(I1MACH(9)))*0.5D0
   214        AA = DMIN1(AA,BB)
   215        IF (AZ.GT.AA) GO TO 260
   216        IF (FN.GT.AA) GO TO 260
   217        AA = DSQRT(AA)
   218        IF (AZ.GT.AA) IERR=3
   219        IF (FN.GT.AA) IERR=3
   220  C-----------------------------------------------------------------------
   221  C     OVERFLOW TEST ON THE LAST MEMBER OF THE SEQUENCE
   222  C-----------------------------------------------------------------------
   223        UFL = D1MACH(1)*1.0D+3
   224        IF (AZ.LT.UFL) GO TO 230
   225        IF (FNU.GT.FNUL) GO TO 90
   226        IF (FN.LE.1.0D0) GO TO 70
   227        IF (FN.GT.2.0D0) GO TO 60
   228        IF (AZ.GT.TOL) GO TO 70
   229        ARG = 0.5D0*AZ
   230        ALN = -FN*DLOG(ARG)
   231        IF (ALN.GT.ELIM) GO TO 230
   232        GO TO 70
   233     60 CONTINUE
   234        CALL ZUOIK(ZNR, ZNI, FNU, KODE, 2, NN, CYR, CYI, NUF, TOL, ELIM,
   235       * ALIM)
   236        IF (NUF.LT.0) GO TO 230
   237        NZ = NZ + NUF
   238        NN = NN - NUF
   239  C-----------------------------------------------------------------------
   240  C     HERE NN=N OR NN=0 SINCE NUF=0,NN, OR -1 ON RETURN FROM CUOIK
   241  C     IF NUF=NN, THEN CY(I)=CZERO FOR ALL I
   242  C-----------------------------------------------------------------------
   243        IF (NN.EQ.0) GO TO 140
   244     70 CONTINUE
   245        IF ((ZNR.LT.0.0D0) .OR. (ZNR.EQ.0.0D0 .AND. ZNI.LT.0.0D0 .AND.
   246       * M.EQ.2)) GO TO 80
   247  C-----------------------------------------------------------------------
   248  C     RIGHT HALF PLANE COMPUTATION, XN.GE.0. .AND. (XN.NE.0. .OR.
   249  C     YN.GE.0. .OR. M=1)
   250  C-----------------------------------------------------------------------
   251        CALL ZBKNU(ZNR, ZNI, FNU, KODE, NN, CYR, CYI, NZ, TOL, ELIM, ALIM)
   252        GO TO 110
   253  C-----------------------------------------------------------------------
   254  C     LEFT HALF PLANE COMPUTATION
   255  C-----------------------------------------------------------------------
   256     80 CONTINUE
   257        MR = -MM
   258        CALL ZACON(ZNR, ZNI, FNU, KODE, MR, NN, CYR, CYI, NW, RL, FNUL,
   259       * TOL, ELIM, ALIM)
   260        IF (NW.LT.0) GO TO 240
   261        NZ=NW
   262        GO TO 110
   263     90 CONTINUE
   264  C-----------------------------------------------------------------------
   265  C     UNIFORM ASYMPTOTIC EXPANSIONS FOR FNU.GT.FNUL
   266  C-----------------------------------------------------------------------
   267        MR = 0
   268        IF ((ZNR.GE.0.0D0) .AND. (ZNR.NE.0.0D0 .OR. ZNI.GE.0.0D0 .OR.
   269       * M.NE.2)) GO TO 100
   270        MR = -MM
   271        IF (ZNR.NE.0.0D0 .OR. ZNI.GE.0.0D0) GO TO 100
   272        ZNR = -ZNR
   273        ZNI = -ZNI
   274    100 CONTINUE
   275        CALL ZBUNK(ZNR, ZNI, FNU, KODE, MR, NN, CYR, CYI, NW, TOL, ELIM,
   276       * ALIM)
   277        IF (NW.LT.0) GO TO 240
   278        NZ = NZ + NW
   279    110 CONTINUE
   280  C-----------------------------------------------------------------------
   281  C     H(M,FNU,Z) = -FMM*(I/HPI)*(ZT**FNU)*K(FNU,-Z*ZT)
   282  C
   283  C     ZT=EXP(-FMM*HPI*I) = CMPLX(0.0,-FMM), FMM=3-2*M, M=1,2
   284  C-----------------------------------------------------------------------
   285        SGN = DSIGN(HPI,-FMM)
   286  C-----------------------------------------------------------------------
   287  C     CALCULATE EXP(FNU*HPI*I) TO MINIMIZE LOSSES OF SIGNIFICANCE
   288  C     WHEN FNU IS LARGE
   289  C-----------------------------------------------------------------------
   290        INU = INT(SNGL(FNU))
   291        INUH = INU/2
   292        IR = INU - 2*INUH
   293        ARG = (FNU-DBLE(FLOAT(INU-IR)))*SGN
   294        RHPI = 1.0D0/SGN
   295  C     ZNI = RHPI*DCOS(ARG)
   296  C     ZNR = -RHPI*DSIN(ARG)
   297        CSGNI = RHPI*DCOS(ARG)
   298        CSGNR = -RHPI*DSIN(ARG)
   299        IF (MOD(INUH,2).EQ.0) GO TO 120
   300  C     ZNR = -ZNR
   301  C     ZNI = -ZNI
   302        CSGNR = -CSGNR
   303        CSGNI = -CSGNI
   304    120 CONTINUE
   305        ZTI = -FMM
   306        RTOL = 1.0D0/TOL
   307        ASCLE = UFL*RTOL
   308        DO 130 I=1,NN
   309  C       STR = CYR(I)*ZNR - CYI(I)*ZNI
   310  C       CYI(I) = CYR(I)*ZNI + CYI(I)*ZNR
   311  C       CYR(I) = STR
   312  C       STR = -ZNI*ZTI
   313  C       ZNI = ZNR*ZTI
   314  C       ZNR = STR
   315          AA = CYR(I)
   316          BB = CYI(I)
   317          ATOL = 1.0D0
   318          IF (DMAX1(DABS(AA),DABS(BB)).GT.ASCLE) GO TO 135
   319            AA = AA*RTOL
   320            BB = BB*RTOL
   321            ATOL = TOL
   322    135 CONTINUE
   323        STR = AA*CSGNR - BB*CSGNI
   324        STI = AA*CSGNI + BB*CSGNR
   325        CYR(I) = STR*ATOL
   326        CYI(I) = STI*ATOL
   327        STR = -CSGNI*ZTI
   328        CSGNI = CSGNR*ZTI
   329        CSGNR = STR
   330    130 CONTINUE
   331        RETURN
   332    140 CONTINUE
   333        IF (ZNR.LT.0.0D0) GO TO 230
   334        RETURN
   335    230 CONTINUE
   336        NZ=0
   337        IERR=2
   338        RETURN
   339    240 CONTINUE
   340        IF(NW.EQ.(-1)) GO TO 230
   341        NZ=0
   342        IERR=5
   343        RETURN
   344    260 CONTINUE
   345        NZ=0
   346        IERR=4
   347        RETURN
   348        END