gonum.org/v1/gonum@v0.14.0/mathext/internal/amos/amoslib/zbesk.f (about)

     1        SUBROUTINE ZBESK(ZR, ZI, FNU, KODE, N, CYR, CYI, NZ, IERR)
     2  C***BEGIN PROLOGUE  ZBESK
     3  C***DATE WRITTEN   830501   (YYMMDD)
     4  C***REVISION DATE  890801   (YYMMDD)
     5  C***CATEGORY NO.  B5K
     6  C***KEYWORDS  K-BESSEL FUNCTION,COMPLEX BESSEL FUNCTION,
     7  C             MODIFIED BESSEL FUNCTION OF THE SECOND KIND,
     8  C             BESSEL FUNCTION OF THE THIRD KIND
     9  C***AUTHOR  AMOS, DONALD E., SANDIA NATIONAL LABORATORIES
    10  C***PURPOSE  TO COMPUTE K-BESSEL FUNCTIONS OF COMPLEX ARGUMENT
    11  C***DESCRIPTION
    12  C
    13  C                      ***A DOUBLE PRECISION ROUTINE***
    14  C
    15  C         ON KODE=1, CBESK COMPUTES AN N MEMBER SEQUENCE OF COMPLEX
    16  C         BESSEL FUNCTIONS CY(J)=K(FNU+J-1,Z) FOR REAL, NONNEGATIVE
    17  C         ORDERS FNU+J-1, J=1,...,N AND COMPLEX Z.NE.CMPLX(0.0,0.0)
    18  C         IN THE CUT PLANE -PI.LT.ARG(Z).LE.PI. ON KODE=2, CBESK
    19  C         RETURNS THE SCALED K FUNCTIONS,
    20  C
    21  C         CY(J)=EXP(Z)*K(FNU+J-1,Z) , J=1,...,N,
    22  C
    23  C         WHICH REMOVE THE EXPONENTIAL BEHAVIOR IN BOTH THE LEFT AND
    24  C         RIGHT HALF PLANES FOR Z TO INFINITY. DEFINITIONS AND
    25  C         NOTATION ARE FOUND IN THE NBS HANDBOOK OF MATHEMATICAL
    26  C         FUNCTIONS (REF. 1).
    27  C
    28  C         INPUT      ZR,ZI,FNU ARE DOUBLE PRECISION
    29  C           ZR,ZI  - Z=CMPLX(ZR,ZI), Z.NE.CMPLX(0.0D0,0.0D0),
    30  C                    -PI.LT.ARG(Z).LE.PI
    31  C           FNU    - ORDER OF INITIAL K FUNCTION, FNU.GE.0.0D0
    32  C           N      - NUMBER OF MEMBERS OF THE SEQUENCE, N.GE.1
    33  C           KODE   - A PARAMETER TO INDICATE THE SCALING OPTION
    34  C                    KODE= 1  RETURNS
    35  C                             CY(I)=K(FNU+I-1,Z), I=1,...,N
    36  C                        = 2  RETURNS
    37  C                             CY(I)=K(FNU+I-1,Z)*EXP(Z), I=1,...,N
    38  C
    39  C         OUTPUT     CYR,CYI ARE DOUBLE PRECISION
    40  C           CYR,CYI- DOUBLE PRECISION VECTORS WHOSE FIRST N COMPONENTS
    41  C                    CONTAIN REAL AND IMAGINARY PARTS FOR THE SEQUENCE
    42  C                    CY(I)=K(FNU+I-1,Z), I=1,...,N OR
    43  C                    CY(I)=K(FNU+I-1,Z)*EXP(Z), I=1,...,N
    44  C                    DEPENDING ON KODE
    45  C           NZ     - NUMBER OF COMPONENTS SET TO ZERO DUE TO UNDERFLOW.
    46  C                    NZ= 0   , NORMAL RETURN
    47  C                    NZ.GT.0 , FIRST NZ COMPONENTS OF CY SET TO ZERO DUE
    48  C                              TO UNDERFLOW, CY(I)=CMPLX(0.0D0,0.0D0),
    49  C                              I=1,...,N WHEN X.GE.0.0. WHEN X.LT.0.0
    50  C                              NZ STATES ONLY THE NUMBER OF UNDERFLOWS
    51  C                              IN THE SEQUENCE.
    52  C
    53  C           IERR   - ERROR FLAG
    54  C                    IERR=0, NORMAL RETURN - COMPUTATION COMPLETED
    55  C                    IERR=1, INPUT ERROR   - NO COMPUTATION
    56  C                    IERR=2, OVERFLOW      - NO COMPUTATION, FNU IS
    57  C                            TOO LARGE OR CABS(Z) IS TOO SMALL OR BOTH
    58  C                    IERR=3, CABS(Z) OR FNU+N-1 LARGE - COMPUTATION DONE
    59  C                            BUT LOSSES OF SIGNIFCANCE BY ARGUMENT
    60  C                            REDUCTION PRODUCE LESS THAN HALF OF MACHINE
    61  C                            ACCURACY
    62  C                    IERR=4, CABS(Z) OR FNU+N-1 TOO LARGE - NO COMPUTA-
    63  C                            TION BECAUSE OF COMPLETE LOSSES OF SIGNIFI-
    64  C                            CANCE BY ARGUMENT REDUCTION
    65  C                    IERR=5, ERROR              - NO COMPUTATION,
    66  C                            ALGORITHM TERMINATION CONDITION NOT MET
    67  C
    68  C***LONG DESCRIPTION
    69  C
    70  C         EQUATIONS OF THE REFERENCE ARE IMPLEMENTED FOR SMALL ORDERS
    71  C         DNU AND DNU+1.0 IN THE RIGHT HALF PLANE X.GE.0.0. FORWARD
    72  C         RECURRENCE GENERATES HIGHER ORDERS. K IS CONTINUED TO THE LEFT
    73  C         HALF PLANE BY THE RELATION
    74  C
    75  C         K(FNU,Z*EXP(MP)) = EXP(-MP*FNU)*K(FNU,Z)-MP*I(FNU,Z)
    76  C         MP=MR*PI*I, MR=+1 OR -1, RE(Z).GT.0, I**2=-1
    77  C
    78  C         WHERE I(FNU,Z) IS THE I BESSEL FUNCTION.
    79  C
    80  C         FOR LARGE ORDERS, FNU.GT.FNUL, THE K FUNCTION IS COMPUTED
    81  C         BY MEANS OF ITS UNIFORM ASYMPTOTIC EXPANSIONS.
    82  C
    83  C         FOR NEGATIVE ORDERS, THE FORMULA
    84  C
    85  C                       K(-FNU,Z) = K(FNU,Z)
    86  C
    87  C         CAN BE USED.
    88  C
    89  C         CBESK ASSUMES THAT A SIGNIFICANT DIGIT SINH(X) FUNCTION IS
    90  C         AVAILABLE.
    91  C
    92  C         IN MOST COMPLEX VARIABLE COMPUTATION, ONE MUST EVALUATE ELE-
    93  C         MENTARY FUNCTIONS. WHEN THE MAGNITUDE OF Z OR FNU+N-1 IS
    94  C         LARGE, LOSSES OF SIGNIFICANCE BY ARGUMENT REDUCTION OCCUR.
    95  C         CONSEQUENTLY, IF EITHER ONE EXCEEDS U1=SQRT(0.5/UR), THEN
    96  C         LOSSES EXCEEDING HALF PRECISION ARE LIKELY AND AN ERROR FLAG
    97  C         IERR=3 IS TRIGGERED WHERE UR=DMAX1(D1MACH(4),1.0D-18) IS
    98  C         DOUBLE PRECISION UNIT ROUNDOFF LIMITED TO 18 DIGITS PRECISION.
    99  C         IF EITHER IS LARGER THAN U2=0.5/UR, THEN ALL SIGNIFICANCE IS
   100  C         LOST AND IERR=4. IN ORDER TO USE THE INT FUNCTION, ARGUMENTS
   101  C         MUST BE FURTHER RESTRICTED NOT TO EXCEED THE LARGEST MACHINE
   102  C         INTEGER, U3=I1MACH(9). THUS, THE MAGNITUDE OF Z AND FNU+N-1 IS
   103  C         RESTRICTED BY MIN(U2,U3). ON 32 BIT MACHINES, U1,U2, AND U3
   104  C         ARE APPROXIMATELY 2.0E+3, 4.2E+6, 2.1E+9 IN SINGLE PRECISION
   105  C         ARITHMETIC AND 1.3E+8, 1.8E+16, 2.1E+9 IN DOUBLE PRECISION
   106  C         ARITHMETIC RESPECTIVELY. THIS MAKES U2 AND U3 LIMITING IN
   107  C         THEIR RESPECTIVE ARITHMETICS. THIS MEANS THAT ONE CAN EXPECT
   108  C         TO RETAIN, IN THE WORST CASES ON 32 BIT MACHINES, NO DIGITS
   109  C         IN SINGLE AND ONLY 7 DIGITS IN DOUBLE PRECISION ARITHMETIC.
   110  C         SIMILAR CONSIDERATIONS HOLD FOR OTHER MACHINES.
   111  C
   112  C         THE APPROXIMATE RELATIVE ERROR IN THE MAGNITUDE OF A COMPLEX
   113  C         BESSEL FUNCTION CAN BE EXPRESSED BY P*10**S WHERE P=MAX(UNIT
   114  C         ROUNDOFF,1.0E-18) IS THE NOMINAL PRECISION AND 10**S REPRE-
   115  C         SENTS THE INCREASE IN ERROR DUE TO ARGUMENT REDUCTION IN THE
   116  C         ELEMENTARY FUNCTIONS. HERE, S=MAX(1,ABS(LOG10(CABS(Z))),
   117  C         ABS(LOG10(FNU))) APPROXIMATELY (I.E. S=MAX(1,ABS(EXPONENT OF
   118  C         CABS(Z),ABS(EXPONENT OF FNU)) ). HOWEVER, THE PHASE ANGLE MAY
   119  C         HAVE ONLY ABSOLUTE ACCURACY. THIS IS MOST LIKELY TO OCCUR WHEN
   120  C         ONE COMPONENT (IN ABSOLUTE VALUE) IS LARGER THAN THE OTHER BY
   121  C         SEVERAL ORDERS OF MAGNITUDE. IF ONE COMPONENT IS 10**K LARGER
   122  C         THAN THE OTHER, THEN ONE CAN EXPECT ONLY MAX(ABS(LOG10(P))-K,
   123  C         0) SIGNIFICANT DIGITS; OR, STATED ANOTHER WAY, WHEN K EXCEEDS
   124  C         THE EXPONENT OF P, NO SIGNIFICANT DIGITS REMAIN IN THE SMALLER
   125  C         COMPONENT. HOWEVER, THE PHASE ANGLE RETAINS ABSOLUTE ACCURACY
   126  C         BECAUSE, IN COMPLEX ARITHMETIC WITH PRECISION P, THE SMALLER
   127  C         COMPONENT WILL NOT (AS A RULE) DECREASE BELOW P TIMES THE
   128  C         MAGNITUDE OF THE LARGER COMPONENT. IN THESE EXTREME CASES,
   129  C         THE PRINCIPAL PHASE ANGLE IS ON THE ORDER OF +P, -P, PI/2-P,
   130  C         OR -PI/2+P.
   131  C
   132  C***REFERENCES  HANDBOOK OF MATHEMATICAL FUNCTIONS BY M. ABRAMOWITZ
   133  C                 AND I. A. STEGUN, NBS AMS SERIES 55, U.S. DEPT. OF
   134  C                 COMMERCE, 1955.
   135  C
   136  C               COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
   137  C                 BY D. E. AMOS, SAND83-0083, MAY, 1983.
   138  C
   139  C               COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
   140  C                 AND LARGE ORDER BY D. E. AMOS, SAND83-0643, MAY, 1983.
   141  C
   142  C               A SUBROUTINE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
   143  C                 ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, SAND85-
   144  C                 1018, MAY, 1985
   145  C
   146  C               A PORTABLE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
   147  C                 ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, TRANS.
   148  C                 MATH. SOFTWARE, 1986
   149  C
   150  C***ROUTINES CALLED  ZACON,ZBKNU,ZBUNK,ZUOIK,ZABS,I1MACH,D1MACH
   151  C***END PROLOGUE  ZBESK
   152  C
   153  C     COMPLEX CY,Z
   154        DOUBLE PRECISION AA, ALIM, ALN, ARG, AZ, CYI, CYR, DIG, ELIM, FN,
   155       * FNU, FNUL, RL, R1M5, TOL, UFL, ZI, ZR, D1MACH, ZABS, BB
   156        INTEGER IERR, K, KODE, K1, K2, MR, N, NN, NUF, NW, NZ, I1MACH
   157        DIMENSION CYR(N), CYI(N)
   158  C***FIRST EXECUTABLE STATEMENT  ZBESK
   159        IERR = 0
   160        NZ=0
   161        IF (ZI.EQ.0.0E0 .AND. ZR.EQ.0.0E0) IERR=1
   162        IF (FNU.LT.0.0D0) IERR=1
   163        IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1
   164        IF (N.LT.1) IERR=1
   165        IF (IERR.NE.0) RETURN
   166        NN = N
   167  C-----------------------------------------------------------------------
   168  C     SET PARAMETERS RELATED TO MACHINE CONSTANTS.
   169  C     TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0E-18.
   170  C     ELIM IS THE APPROXIMATE EXPONENTIAL OVER- AND UNDERFLOW LIMIT.
   171  C     EXP(-ELIM).LT.EXP(-ALIM)=EXP(-ELIM)/TOL    AND
   172  C     EXP(ELIM).GT.EXP(ALIM)=EXP(ELIM)*TOL       ARE INTERVALS NEAR
   173  C     UNDERFLOW AND OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE.
   174  C     RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LARGE Z.
   175  C     DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG).
   176  C     FNUL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC SERIES FOR LARGE FNU
   177  C-----------------------------------------------------------------------
   178        TOL = DMAX1(D1MACH(4),1.0D-18)
   179        K1 = I1MACH(15)
   180        K2 = I1MACH(16)
   181        R1M5 = D1MACH(5)
   182        K = MIN0(IABS(K1),IABS(K2))
   183        ELIM = 2.303D0*(DBLE(FLOAT(K))*R1M5-3.0D0)
   184        K1 = I1MACH(14) - 1
   185        AA = R1M5*DBLE(FLOAT(K1))
   186        DIG = DMIN1(AA,18.0D0)
   187        AA = AA*2.303D0
   188        ALIM = ELIM + DMAX1(-AA,-41.45D0)
   189        FNUL = 10.0D0 + 6.0D0*(DIG-3.0D0)
   190        RL = 1.2D0*DIG + 3.0D0
   191  C-----------------------------------------------------------------------------
   192  C     TEST FOR PROPER RANGE
   193  C-----------------------------------------------------------------------
   194        AZ = ZABS(CMPLX(ZR,ZI,kind=KIND(1.0D0)))
   195        FN = FNU + DBLE(FLOAT(NN-1))
   196        AA = 0.5D0/TOL
   197        BB=DBLE(FLOAT(I1MACH(9)))*0.5D0
   198        AA = DMIN1(AA,BB)
   199        IF (AZ.GT.AA) GO TO 260
   200        IF (FN.GT.AA) GO TO 260
   201        AA = DSQRT(AA)
   202        IF (AZ.GT.AA) IERR=3
   203        IF (FN.GT.AA) IERR=3
   204  C-----------------------------------------------------------------------
   205  C     OVERFLOW TEST ON THE LAST MEMBER OF THE SEQUENCE
   206  C-----------------------------------------------------------------------
   207  C     UFL = DEXP(-ELIM)
   208        UFL = D1MACH(1)*1.0D+3
   209        IF (AZ.LT.UFL) GO TO 180
   210        IF (FNU.GT.FNUL) GO TO 80
   211        IF (FN.LE.1.0D0) GO TO 60
   212        IF (FN.GT.2.0D0) GO TO 50
   213        IF (AZ.GT.TOL) GO TO 60
   214        ARG = 0.5D0*AZ
   215        ALN = -FN*DLOG(ARG)
   216        IF (ALN.GT.ELIM) GO TO 180
   217        GO TO 60
   218     50 CONTINUE
   219        CALL ZUOIK(ZR, ZI, FNU, KODE, 2, NN, CYR, CYI, NUF, TOL, ELIM,
   220       * ALIM)
   221        IF (NUF.LT.0) GO TO 180
   222        NZ = NZ + NUF
   223        NN = NN - NUF
   224  C-----------------------------------------------------------------------
   225  C     HERE NN=N OR NN=0 SINCE NUF=0,NN, OR -1 ON RETURN FROM CUOIK
   226  C     IF NUF=NN, THEN CY(I)=CZERO FOR ALL I
   227  C-----------------------------------------------------------------------
   228        IF (NN.EQ.0) GO TO 100
   229     60 CONTINUE
   230        IF (ZR.LT.0.0D0) GO TO 70
   231  C-----------------------------------------------------------------------
   232  C     RIGHT HALF PLANE COMPUTATION, REAL(Z).GE.0.
   233  C-----------------------------------------------------------------------
   234        CALL ZBKNU(ZR, ZI, FNU, KODE, NN, CYR, CYI, NW, TOL, ELIM, ALIM)
   235        IF (NW.LT.0) GO TO 200
   236        NZ=NW
   237        RETURN
   238  C-----------------------------------------------------------------------
   239  C     LEFT HALF PLANE COMPUTATION
   240  C     PI/2.LT.ARG(Z).LE.PI AND -PI.LT.ARG(Z).LT.-PI/2.
   241  C-----------------------------------------------------------------------
   242     70 CONTINUE
   243        IF (NZ.NE.0) GO TO 180
   244        MR = 1
   245        IF (ZI.LT.0.0D0) MR = -1
   246        CALL ZACON(ZR, ZI, FNU, KODE, MR, NN, CYR, CYI, NW, RL, FNUL,
   247       * TOL, ELIM, ALIM)
   248        IF (NW.LT.0) GO TO 200
   249        NZ=NW
   250        RETURN
   251  C-----------------------------------------------------------------------
   252  C     UNIFORM ASYMPTOTIC EXPANSIONS FOR FNU.GT.FNUL
   253  C-----------------------------------------------------------------------
   254     80 CONTINUE
   255        MR = 0
   256        IF (ZR.GE.0.0D0) GO TO 90
   257        MR = 1
   258        IF (ZI.LT.0.0D0) MR = -1
   259     90 CONTINUE
   260        CALL ZBUNK(ZR, ZI, FNU, KODE, MR, NN, CYR, CYI, NW, TOL, ELIM,
   261       * ALIM)
   262        IF (NW.LT.0) GO TO 200
   263        NZ = NZ + NW
   264        RETURN
   265    100 CONTINUE
   266        IF (ZR.LT.0.0D0) GO TO 180
   267        RETURN
   268    180 CONTINUE
   269        NZ = 0
   270        IERR=2
   271        RETURN
   272    200 CONTINUE
   273        IF(NW.EQ.(-1)) GO TO 180
   274        NZ=0
   275        IERR=5
   276        RETURN
   277    260 CONTINUE
   278        NZ=0
   279        IERR=4
   280        RETURN
   281        END