gonum.org/v1/gonum@v0.14.0/mathext/internal/amos/amoslib/zbiry.f (about)

     1        SUBROUTINE ZBIRY(ZR, ZI, ID, KODE, BIR, BII, IERR)
     2  C***BEGIN PROLOGUE  ZBIRY
     3  C***DATE WRITTEN   830501   (YYMMDD)
     4  C***REVISION DATE  890801   (YYMMDD)
     5  C***CATEGORY NO.  B5K
     6  C***KEYWORDS  AIRY FUNCTION,BESSEL FUNCTIONS OF ORDER ONE THIRD
     7  C***AUTHOR  AMOS, DONALD E., SANDIA NATIONAL LABORATORIES
     8  C***PURPOSE  TO COMPUTE AIRY FUNCTIONS BI(Z) AND DBI(Z) FOR COMPLEX Z
     9  C***DESCRIPTION
    10  C
    11  C                      ***A DOUBLE PRECISION ROUTINE***
    12  C         ON KODE=1, CBIRY COMPUTES THE COMPLEX AIRY FUNCTION BI(Z) OR
    13  C         ITS DERIVATIVE DBI(Z)/DZ ON ID=0 OR ID=1 RESPECTIVELY. ON
    14  C         KODE=2, A SCALING OPTION CEXP(-AXZTA)*BI(Z) OR CEXP(-AXZTA)*
    15  C         DBI(Z)/DZ IS PROVIDED TO REMOVE THE EXPONENTIAL BEHAVIOR IN
    16  C         BOTH THE LEFT AND RIGHT HALF PLANES WHERE
    17  C         ZTA=(2/3)*Z*CSQRT(Z)=CMPLX(XZTA,YZTA) AND AXZTA=ABS(XZTA).
    18  C         DEFINTIONS AND NOTATION ARE FOUND IN THE NBS HANDBOOK OF
    19  C         MATHEMATICAL FUNCTIONS (REF. 1).
    20  C
    21  C         INPUT      ZR,ZI ARE DOUBLE PRECISION
    22  C           ZR,ZI  - Z=CMPLX(ZR,ZI)
    23  C           ID     - ORDER OF DERIVATIVE, ID=0 OR ID=1
    24  C           KODE   - A PARAMETER TO INDICATE THE SCALING OPTION
    25  C                    KODE= 1  RETURNS
    26  C                             BI=BI(Z)                 ON ID=0 OR
    27  C                             BI=DBI(Z)/DZ             ON ID=1
    28  C                        = 2  RETURNS
    29  C                             BI=CEXP(-AXZTA)*BI(Z)     ON ID=0 OR
    30  C                             BI=CEXP(-AXZTA)*DBI(Z)/DZ ON ID=1 WHERE
    31  C                             ZTA=(2/3)*Z*CSQRT(Z)=CMPLX(XZTA,YZTA)
    32  C                             AND AXZTA=ABS(XZTA)
    33  C
    34  C         OUTPUT     BIR,BII ARE DOUBLE PRECISION
    35  C           BIR,BII- COMPLEX ANSWER DEPENDING ON THE CHOICES FOR ID AND
    36  C                    KODE
    37  C           IERR   - ERROR FLAG
    38  C                    IERR=0, NORMAL RETURN - COMPUTATION COMPLETED
    39  C                    IERR=1, INPUT ERROR   - NO COMPUTATION
    40  C                    IERR=2, OVERFLOW      - NO COMPUTATION, REAL(Z)
    41  C                            TOO LARGE ON KODE=1
    42  C                    IERR=3, CABS(Z) LARGE      - COMPUTATION COMPLETED
    43  C                            LOSSES OF SIGNIFCANCE BY ARGUMENT REDUCTION
    44  C                            PRODUCE LESS THAN HALF OF MACHINE ACCURACY
    45  C                    IERR=4, CABS(Z) TOO LARGE  - NO COMPUTATION
    46  C                            COMPLETE LOSS OF ACCURACY BY ARGUMENT
    47  C                            REDUCTION
    48  C                    IERR=5, ERROR              - NO COMPUTATION,
    49  C                            ALGORITHM TERMINATION CONDITION NOT MET
    50  C
    51  C***LONG DESCRIPTION
    52  C
    53  C         BI AND DBI ARE COMPUTED FOR CABS(Z).GT.1.0 FROM THE I BESSEL
    54  C         FUNCTIONS BY
    55  C
    56  C                BI(Z)=C*SQRT(Z)*( I(-1/3,ZTA) + I(1/3,ZTA) )
    57  C               DBI(Z)=C *  Z  * ( I(-2/3,ZTA) + I(2/3,ZTA) )
    58  C                               C=1.0/SQRT(3.0)
    59  C                             ZTA=(2/3)*Z**(3/2)
    60  C
    61  C         WITH THE POWER SERIES FOR CABS(Z).LE.1.0.
    62  C
    63  C         IN MOST COMPLEX VARIABLE COMPUTATION, ONE MUST EVALUATE ELE-
    64  C         MENTARY FUNCTIONS. WHEN THE MAGNITUDE OF Z IS LARGE, LOSSES
    65  C         OF SIGNIFICANCE BY ARGUMENT REDUCTION OCCUR. CONSEQUENTLY, IF
    66  C         THE MAGNITUDE OF ZETA=(2/3)*Z**1.5 EXCEEDS U1=SQRT(0.5/UR),
    67  C         THEN LOSSES EXCEEDING HALF PRECISION ARE LIKELY AND AN ERROR
    68  C         FLAG IERR=3 IS TRIGGERED WHERE UR=DMAX1(D1MACH(4),1.0D-18) IS
    69  C         DOUBLE PRECISION UNIT ROUNDOFF LIMITED TO 18 DIGITS PRECISION.
    70  C         ALSO, IF THE MAGNITUDE OF ZETA IS LARGER THAN U2=0.5/UR, THEN
    71  C         ALL SIGNIFICANCE IS LOST AND IERR=4. IN ORDER TO USE THE INT
    72  C         FUNCTION, ZETA MUST BE FURTHER RESTRICTED NOT TO EXCEED THE
    73  C         LARGEST INTEGER, U3=I1MACH(9). THUS, THE MAGNITUDE OF ZETA
    74  C         MUST BE RESTRICTED BY MIN(U2,U3). ON 32 BIT MACHINES, U1,U2,
    75  C         AND U3 ARE APPROXIMATELY 2.0E+3, 4.2E+6, 2.1E+9 IN SINGLE
    76  C         PRECISION ARITHMETIC AND 1.3E+8, 1.8E+16, 2.1E+9 IN DOUBLE
    77  C         PRECISION ARITHMETIC RESPECTIVELY. THIS MAKES U2 AND U3 LIMIT-
    78  C         ING IN THEIR RESPECTIVE ARITHMETICS. THIS MEANS THAT THE MAG-
    79  C         NITUDE OF Z CANNOT EXCEED 3.1E+4 IN SINGLE AND 2.1E+6 IN
    80  C         DOUBLE PRECISION ARITHMETIC. THIS ALSO MEANS THAT ONE CAN
    81  C         EXPECT TO RETAIN, IN THE WORST CASES ON 32 BIT MACHINES,
    82  C         NO DIGITS IN SINGLE PRECISION AND ONLY 7 DIGITS IN DOUBLE
    83  C         PRECISION ARITHMETIC. SIMILAR CONSIDERATIONS HOLD FOR OTHER
    84  C         MACHINES.
    85  C
    86  C         THE APPROXIMATE RELATIVE ERROR IN THE MAGNITUDE OF A COMPLEX
    87  C         BESSEL FUNCTION CAN BE EXPRESSED BY P*10**S WHERE P=MAX(UNIT
    88  C         ROUNDOFF,1.0E-18) IS THE NOMINAL PRECISION AND 10**S REPRE-
    89  C         SENTS THE INCREASE IN ERROR DUE TO ARGUMENT REDUCTION IN THE
    90  C         ELEMENTARY FUNCTIONS. HERE, S=MAX(1,ABS(LOG10(CABS(Z))),
    91  C         ABS(LOG10(FNU))) APPROXIMATELY (I.E. S=MAX(1,ABS(EXPONENT OF
    92  C         CABS(Z),ABS(EXPONENT OF FNU)) ). HOWEVER, THE PHASE ANGLE MAY
    93  C         HAVE ONLY ABSOLUTE ACCURACY. THIS IS MOST LIKELY TO OCCUR WHEN
    94  C         ONE COMPONENT (IN ABSOLUTE VALUE) IS LARGER THAN THE OTHER BY
    95  C         SEVERAL ORDERS OF MAGNITUDE. IF ONE COMPONENT IS 10**K LARGER
    96  C         THAN THE OTHER, THEN ONE CAN EXPECT ONLY MAX(ABS(LOG10(P))-K,
    97  C         0) SIGNIFICANT DIGITS; OR, STATED ANOTHER WAY, WHEN K EXCEEDS
    98  C         THE EXPONENT OF P, NO SIGNIFICANT DIGITS REMAIN IN THE SMALLER
    99  C         COMPONENT. HOWEVER, THE PHASE ANGLE RETAINS ABSOLUTE ACCURACY
   100  C         BECAUSE, IN COMPLEX ARITHMETIC WITH PRECISION P, THE SMALLER
   101  C         COMPONENT WILL NOT (AS A RULE) DECREASE BELOW P TIMES THE
   102  C         MAGNITUDE OF THE LARGER COMPONENT. IN THESE EXTREME CASES,
   103  C         THE PRINCIPAL PHASE ANGLE IS ON THE ORDER OF +P, -P, PI/2-P,
   104  C         OR -PI/2+P.
   105  C
   106  C***REFERENCES  HANDBOOK OF MATHEMATICAL FUNCTIONS BY M. ABRAMOWITZ
   107  C                 AND I. A. STEGUN, NBS AMS SERIES 55, U.S. DEPT. OF
   108  C                 COMMERCE, 1955.
   109  C
   110  C               COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
   111  C                 AND LARGE ORDER BY D. E. AMOS, SAND83-0643, MAY, 1983
   112  C
   113  C               A SUBROUTINE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
   114  C                 ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, SAND85-
   115  C                 1018, MAY, 1985
   116  C
   117  C               A PORTABLE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
   118  C                 ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, TRANS.
   119  C                 MATH. SOFTWARE, 1986
   120  C
   121  C***ROUTINES CALLED  ZBINU,ZABS,ZDIV,ZSQRT,D1MACH,I1MACH
   122  C***END PROLOGUE  ZBIRY
   123  C     COMPLEX BI,CONE,CSQ,CY,S1,S2,TRM1,TRM2,Z,ZTA,Z3
   124        DOUBLE PRECISION AA, AD, AK, ALIM, ATRM, AZ, AZ3, BB, BII, BIR,
   125       * BK, CC, CK, COEF, CONEI, CONER, CSQI, CSQR, CYI, CYR, C1, C2,
   126       * DIG, DK, D1, D2, EAA, ELIM, FID, FMR, FNU, FNUL, PI, RL, R1M5,
   127       * SFAC, STI, STR, S1I, S1R, S2I, S2R, TOL, TRM1I, TRM1R, TRM2I,
   128       * TRM2R, TTH, ZI, ZR, ZTAI, ZTAR, Z3I, Z3R, D1MACH, ZABS
   129        INTEGER ID, IERR, K, KODE, K1, K2, NZ, I1MACH
   130        DIMENSION CYR(2), CYI(2)
   131        DATA TTH, C1, C2, COEF, PI /6.66666666666666667D-01,
   132       * 6.14926627446000736D-01,4.48288357353826359D-01,
   133       * 5.77350269189625765D-01,3.14159265358979324D+00/
   134        DATA CONER, CONEI /1.0D0,0.0D0/
   135  C***FIRST EXECUTABLE STATEMENT  ZBIRY
   136        IERR = 0
   137        NZ=0
   138        IF (ID.LT.0 .OR. ID.GT.1) IERR=1
   139        IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1
   140        IF (IERR.NE.0) RETURN
   141        AZ = ZABS(CMPLX(ZR,ZI,kind=KIND(1.0D0)))
   142        TOL = DMAX1(D1MACH(4),1.0D-18)
   143        FID = DBLE(FLOAT(ID))
   144        IF (AZ.GT.1.0E0) GO TO 70
   145  C-----------------------------------------------------------------------
   146  C     POWER SERIES FOR CABS(Z).LE.1.
   147  C-----------------------------------------------------------------------
   148        S1R = CONER
   149        S1I = CONEI
   150        S2R = CONER
   151        S2I = CONEI
   152        IF (AZ.LT.TOL) GO TO 130
   153        AA = AZ*AZ
   154        IF (AA.LT.TOL/AZ) GO TO 40
   155        TRM1R = CONER
   156        TRM1I = CONEI
   157        TRM2R = CONER
   158        TRM2I = CONEI
   159        ATRM = 1.0D0
   160        STR = ZR*ZR - ZI*ZI
   161        STI = ZR*ZI + ZI*ZR
   162        Z3R = STR*ZR - STI*ZI
   163        Z3I = STR*ZI + STI*ZR
   164        AZ3 = AZ*AA
   165        AK = 2.0D0 + FID
   166        BK = 3.0D0 - FID - FID
   167        CK = 4.0D0 - FID
   168        DK = 3.0D0 + FID + FID
   169        D1 = AK*DK
   170        D2 = BK*CK
   171        AD = DMIN1(D1,D2)
   172        AK = 24.0D0 + 9.0D0*FID
   173        BK = 30.0D0 - 9.0D0*FID
   174        DO 30 K=1,25
   175          STR = (TRM1R*Z3R-TRM1I*Z3I)/D1
   176          TRM1I = (TRM1R*Z3I+TRM1I*Z3R)/D1
   177          TRM1R = STR
   178          S1R = S1R + TRM1R
   179          S1I = S1I + TRM1I
   180          STR = (TRM2R*Z3R-TRM2I*Z3I)/D2
   181          TRM2I = (TRM2R*Z3I+TRM2I*Z3R)/D2
   182          TRM2R = STR
   183          S2R = S2R + TRM2R
   184          S2I = S2I + TRM2I
   185          ATRM = ATRM*AZ3/AD
   186          D1 = D1 + AK
   187          D2 = D2 + BK
   188          AD = DMIN1(D1,D2)
   189          IF (ATRM.LT.TOL*AD) GO TO 40
   190          AK = AK + 18.0D0
   191          BK = BK + 18.0D0
   192     30 CONTINUE
   193     40 CONTINUE
   194        IF (ID.EQ.1) GO TO 50
   195        BIR = C1*S1R + C2*(ZR*S2R-ZI*S2I)
   196        BII = C1*S1I + C2*(ZR*S2I+ZI*S2R)
   197        IF (KODE.EQ.1) RETURN
   198        CALL ZSQRT(ZR, ZI, STR, STI)
   199        ZTAR = TTH*(ZR*STR-ZI*STI)
   200        ZTAI = TTH*(ZR*STI+ZI*STR)
   201        AA = ZTAR
   202        AA = -DABS(AA)
   203        EAA = DEXP(AA)
   204        BIR = BIR*EAA
   205        BII = BII*EAA
   206        RETURN
   207     50 CONTINUE
   208        BIR = S2R*C2
   209        BII = S2I*C2
   210        IF (AZ.LE.TOL) GO TO 60
   211        CC = C1/(1.0D0+FID)
   212        STR = S1R*ZR - S1I*ZI
   213        STI = S1R*ZI + S1I*ZR
   214        BIR = BIR + CC*(STR*ZR-STI*ZI)
   215        BII = BII + CC*(STR*ZI+STI*ZR)
   216     60 CONTINUE
   217        IF (KODE.EQ.1) RETURN
   218        CALL ZSQRT(ZR, ZI, STR, STI)
   219        ZTAR = TTH*(ZR*STR-ZI*STI)
   220        ZTAI = TTH*(ZR*STI+ZI*STR)
   221        AA = ZTAR
   222        AA = -DABS(AA)
   223        EAA = DEXP(AA)
   224        BIR = BIR*EAA
   225        BII = BII*EAA
   226        RETURN
   227  C-----------------------------------------------------------------------
   228  C     CASE FOR CABS(Z).GT.1.0
   229  C-----------------------------------------------------------------------
   230     70 CONTINUE
   231        FNU = (1.0D0+FID)/3.0D0
   232  C-----------------------------------------------------------------------
   233  C     SET PARAMETERS RELATED TO MACHINE CONSTANTS.
   234  C     TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0E-18.
   235  C     ELIM IS THE APPROXIMATE EXPONENTIAL OVER- AND UNDERFLOW LIMIT.
   236  C     EXP(-ELIM).LT.EXP(-ALIM)=EXP(-ELIM)/TOL    AND
   237  C     EXP(ELIM).GT.EXP(ALIM)=EXP(ELIM)*TOL       ARE INTERVALS NEAR
   238  C     UNDERFLOW AND OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE.
   239  C     RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LARGE Z.
   240  C     DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG).
   241  C     FNUL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC SERIES FOR LARGE FNU.
   242  C-----------------------------------------------------------------------
   243        K1 = I1MACH(15)
   244        K2 = I1MACH(16)
   245        R1M5 = D1MACH(5)
   246        K = MIN0(IABS(K1),IABS(K2))
   247        ELIM = 2.303D0*(DBLE(FLOAT(K))*R1M5-3.0D0)
   248        K1 = I1MACH(14) - 1
   249        AA = R1M5*DBLE(FLOAT(K1))
   250        DIG = DMIN1(AA,18.0D0)
   251        AA = AA*2.303D0
   252        ALIM = ELIM + DMAX1(-AA,-41.45D0)
   253        RL = 1.2D0*DIG + 3.0D0
   254        FNUL = 10.0D0 + 6.0D0*(DIG-3.0D0)
   255  C-----------------------------------------------------------------------
   256  C     TEST FOR RANGE
   257  C-----------------------------------------------------------------------
   258        AA=0.5D0/TOL
   259        BB=DBLE(FLOAT(I1MACH(9)))*0.5D0
   260        AA=DMIN1(AA,BB)
   261        AA=AA**TTH
   262        IF (AZ.GT.AA) GO TO 260
   263        AA=DSQRT(AA)
   264        IF (AZ.GT.AA) IERR=3
   265        CALL ZSQRT(ZR, ZI, CSQR, CSQI)
   266        ZTAR = TTH*(ZR*CSQR-ZI*CSQI)
   267        ZTAI = TTH*(ZR*CSQI+ZI*CSQR)
   268  C-----------------------------------------------------------------------
   269  C     RE(ZTA).LE.0 WHEN RE(Z).LT.0, ESPECIALLY WHEN IM(Z) IS SMALL
   270  C-----------------------------------------------------------------------
   271        SFAC = 1.0D0
   272        AK = ZTAI
   273        IF (ZR.GE.0.0D0) GO TO 80
   274        BK = ZTAR
   275        CK = -DABS(BK)
   276        ZTAR = CK
   277        ZTAI = AK
   278     80 CONTINUE
   279        IF (ZI.NE.0.0D0 .OR. ZR.GT.0.0D0) GO TO 90
   280        ZTAR = 0.0D0
   281        ZTAI = AK
   282     90 CONTINUE
   283        AA = ZTAR
   284        IF (KODE.EQ.2) GO TO 100
   285  C-----------------------------------------------------------------------
   286  C     OVERFLOW TEST
   287  C-----------------------------------------------------------------------
   288        BB = DABS(AA)
   289        IF (BB.LT.ALIM) GO TO 100
   290        BB = BB + 0.25D0*DLOG(AZ)
   291        SFAC = TOL
   292        IF (BB.GT.ELIM) GO TO 190
   293    100 CONTINUE
   294        FMR = 0.0D0
   295        IF (AA.GE.0.0D0 .AND. ZR.GT.0.0D0) GO TO 110
   296        FMR = PI
   297        IF (ZI.LT.0.0D0) FMR = -PI
   298        ZTAR = -ZTAR
   299        ZTAI = -ZTAI
   300    110 CONTINUE
   301  C-----------------------------------------------------------------------
   302  C     AA=FACTOR FOR ANALYTIC CONTINUATION OF I(FNU,ZTA)
   303  C     KODE=2 RETURNS EXP(-ABS(XZTA))*I(FNU,ZTA) FROM CBESI
   304  C-----------------------------------------------------------------------
   305        CALL ZBINU(ZTAR, ZTAI, FNU, KODE, 1, CYR, CYI, NZ, RL, FNUL, TOL,
   306       * ELIM, ALIM)
   307        IF (NZ.LT.0) GO TO 200
   308        AA = FMR*FNU
   309        Z3R = SFAC
   310        STR = DCOS(AA)
   311        STI = DSIN(AA)
   312        S1R = (STR*CYR(1)-STI*CYI(1))*Z3R
   313        S1I = (STR*CYI(1)+STI*CYR(1))*Z3R
   314        FNU = (2.0D0-FID)/3.0D0
   315        CALL ZBINU(ZTAR, ZTAI, FNU, KODE, 2, CYR, CYI, NZ, RL, FNUL, TOL,
   316       * ELIM, ALIM)
   317        CYR(1) = CYR(1)*Z3R
   318        CYI(1) = CYI(1)*Z3R
   319        CYR(2) = CYR(2)*Z3R
   320        CYI(2) = CYI(2)*Z3R
   321  C-----------------------------------------------------------------------
   322  C     BACKWARD RECUR ONE STEP FOR ORDERS -1/3 OR -2/3
   323  C-----------------------------------------------------------------------
   324        CALL ZDIV(CYR(1), CYI(1), ZTAR, ZTAI, STR, STI)
   325        S2R = (FNU+FNU)*STR + CYR(2)
   326        S2I = (FNU+FNU)*STI + CYI(2)
   327        AA = FMR*(FNU-1.0D0)
   328        STR = DCOS(AA)
   329        STI = DSIN(AA)
   330        S1R = COEF*(S1R+S2R*STR-S2I*STI)
   331        S1I = COEF*(S1I+S2R*STI+S2I*STR)
   332        IF (ID.EQ.1) GO TO 120
   333        STR = CSQR*S1R - CSQI*S1I
   334        S1I = CSQR*S1I + CSQI*S1R
   335        S1R = STR
   336        BIR = S1R/SFAC
   337        BII = S1I/SFAC
   338        RETURN
   339    120 CONTINUE
   340        STR = ZR*S1R - ZI*S1I
   341        S1I = ZR*S1I + ZI*S1R
   342        S1R = STR
   343        BIR = S1R/SFAC
   344        BII = S1I/SFAC
   345        RETURN
   346    130 CONTINUE
   347        AA = C1*(1.0D0-FID) + FID*C2
   348        BIR = AA
   349        BII = 0.0D0
   350        RETURN
   351    190 CONTINUE
   352        IERR=2
   353        NZ=0
   354        RETURN
   355    200 CONTINUE
   356        IF(NZ.EQ.(-1)) GO TO 190
   357        NZ=0
   358        IERR=5
   359        RETURN
   360    260 CONTINUE
   361        IERR=4
   362        NZ=0
   363        RETURN
   364        END