gonum.org/v1/gonum@v0.14.0/mathext/internal/cephes/ndtri.go (about) 1 // Copyright ©2016 The Gonum Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 /* 6 * Cephes Math Library Release 2.1: January, 1989 7 * Copyright 1984, 1987, 1989 by Stephen L. Moshier 8 * Direct inquiries to 30 Frost Street, Cambridge, MA 02140 9 */ 10 11 package cephes 12 13 import "math" 14 15 // TODO(btracey): There is currently an implementation of this functionality 16 // in gonum/stat/distuv. Find out which implementation is better, and rectify 17 // by having distuv call this, or moving this implementation into 18 // gonum/mathext/internal/gonum. 19 20 // math.Sqrt(2*pi) 21 const s2pi = 2.50662827463100050242e0 22 23 // approximation for 0 <= |y - 0.5| <= 3/8 24 var P0 = [5]float64{ 25 -5.99633501014107895267e1, 26 9.80010754185999661536e1, 27 -5.66762857469070293439e1, 28 1.39312609387279679503e1, 29 -1.23916583867381258016e0, 30 } 31 32 var Q0 = [8]float64{ 33 /* 1.00000000000000000000E0, */ 34 1.95448858338141759834e0, 35 4.67627912898881538453e0, 36 8.63602421390890590575e1, 37 -2.25462687854119370527e2, 38 2.00260212380060660359e2, 39 -8.20372256168333339912e1, 40 1.59056225126211695515e1, 41 -1.18331621121330003142e0, 42 } 43 44 // Approximation for interval z = math.Sqrt(-2 log y ) between 2 and 8 45 // i.e., y between exp(-2) = .135 and exp(-32) = 1.27e-14. 46 var P1 = [9]float64{ 47 4.05544892305962419923e0, 48 3.15251094599893866154e1, 49 5.71628192246421288162e1, 50 4.40805073893200834700e1, 51 1.46849561928858024014e1, 52 2.18663306850790267539e0, 53 -1.40256079171354495875e-1, 54 -3.50424626827848203418e-2, 55 -8.57456785154685413611e-4, 56 } 57 58 var Q1 = [8]float64{ 59 /* 1.00000000000000000000E0, */ 60 1.57799883256466749731e1, 61 4.53907635128879210584e1, 62 4.13172038254672030440e1, 63 1.50425385692907503408e1, 64 2.50464946208309415979e0, 65 -1.42182922854787788574e-1, 66 -3.80806407691578277194e-2, 67 -9.33259480895457427372e-4, 68 } 69 70 // Approximation for interval z = math.Sqrt(-2 log y ) between 8 and 64 71 // i.e., y between exp(-32) = 1.27e-14 and exp(-2048) = 3.67e-890. 72 var P2 = [9]float64{ 73 3.23774891776946035970e0, 74 6.91522889068984211695e0, 75 3.93881025292474443415e0, 76 1.33303460815807542389e0, 77 2.01485389549179081538e-1, 78 1.23716634817820021358e-2, 79 3.01581553508235416007e-4, 80 2.65806974686737550832e-6, 81 6.23974539184983293730e-9, 82 } 83 84 var Q2 = [8]float64{ 85 /* 1.00000000000000000000E0, */ 86 6.02427039364742014255e0, 87 3.67983563856160859403e0, 88 1.37702099489081330271e0, 89 2.16236993594496635890e-1, 90 1.34204006088543189037e-2, 91 3.28014464682127739104e-4, 92 2.89247864745380683936e-6, 93 6.79019408009981274425e-9, 94 } 95 96 // Ndtri returns the argument, x, for which the area under the 97 // Gaussian probability density function (integrated from 98 // minus infinity to x) is equal to y. 99 func Ndtri(y0 float64) float64 { 100 // For small arguments 0 < y < exp(-2), the program computes 101 // z = math.Sqrt( -2.0 * math.Log(y) ); then the approximation is 102 // x = z - math.Log(z)/z - (1/z) P(1/z) / Q(1/z). 103 // There are two rational functions P/Q, one for 0 < y < exp(-32) 104 // and the other for y up to exp(-2). For larger arguments, 105 // w = y - 0.5, and x/math.Sqrt(2pi) = w + w**3 R(w**2)/S(w**2)). 106 var x, y, z, y2, x0, x1 float64 107 var code int 108 109 if y0 <= 0.0 { 110 if y0 < 0 { 111 panic(paramOutOfBounds) 112 } 113 return math.Inf(-1) 114 } 115 if y0 >= 1.0 { 116 if y0 > 1 { 117 panic(paramOutOfBounds) 118 } 119 return math.Inf(1) 120 } 121 code = 1 122 y = y0 123 if y > (1.0 - 0.13533528323661269189) { /* 0.135... = exp(-2) */ 124 y = 1.0 - y 125 code = 0 126 } 127 128 if y > 0.13533528323661269189 { 129 y = y - 0.5 130 y2 = y * y 131 x = y + y*(y2*polevl(y2, P0[:], 4)/p1evl(y2, Q0[:], 8)) 132 x = x * s2pi 133 return (x) 134 } 135 136 x = math.Sqrt(-2.0 * math.Log(y)) 137 x0 = x - math.Log(x)/x 138 139 z = 1.0 / x 140 if x < 8.0 { /* y > exp(-32) = 1.2664165549e-14 */ 141 x1 = z * polevl(z, P1[:], 8) / p1evl(z, Q1[:], 8) 142 } else { 143 x1 = z * polevl(z, P2[:], 8) / p1evl(z, Q2[:], 8) 144 } 145 x = x0 - x1 146 if code != 0 { 147 x = -x 148 } 149 return (x) 150 }