gonum.org/v1/gonum@v0.14.0/spatial/r3/vector.go (about) 1 // Copyright ©2019 The Gonum Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package r3 6 7 import "math" 8 9 // Vec is a 3D vector. 10 type Vec struct { 11 X, Y, Z float64 12 } 13 14 // Add returns the vector sum of p and q. 15 func Add(p, q Vec) Vec { 16 return Vec{ 17 X: p.X + q.X, 18 Y: p.Y + q.Y, 19 Z: p.Z + q.Z, 20 } 21 } 22 23 // Sub returns the vector sum of p and -q. 24 func Sub(p, q Vec) Vec { 25 return Vec{ 26 X: p.X - q.X, 27 Y: p.Y - q.Y, 28 Z: p.Z - q.Z, 29 } 30 } 31 32 // Scale returns the vector p scaled by f. 33 func Scale(f float64, p Vec) Vec { 34 return Vec{ 35 X: f * p.X, 36 Y: f * p.Y, 37 Z: f * p.Z, 38 } 39 } 40 41 // Dot returns the dot product p·q. 42 func Dot(p, q Vec) float64 { 43 return p.X*q.X + p.Y*q.Y + p.Z*q.Z 44 } 45 46 // Cross returns the cross product p×q. 47 func Cross(p, q Vec) Vec { 48 return Vec{ 49 p.Y*q.Z - p.Z*q.Y, 50 p.Z*q.X - p.X*q.Z, 51 p.X*q.Y - p.Y*q.X, 52 } 53 } 54 55 // Rotate returns a new vector, rotated by alpha around the provided axis. 56 func Rotate(p Vec, alpha float64, axis Vec) Vec { 57 return NewRotation(alpha, axis).Rotate(p) 58 } 59 60 // Norm returns the Euclidean norm of p 61 // 62 // |p| = sqrt(p_x^2 + p_y^2 + p_z^2). 63 func Norm(p Vec) float64 { 64 return math.Hypot(p.X, math.Hypot(p.Y, p.Z)) 65 } 66 67 // Norm2 returns the Euclidean squared norm of p 68 // 69 // |p|^2 = p_x^2 + p_y^2 + p_z^2. 70 func Norm2(p Vec) float64 { 71 return p.X*p.X + p.Y*p.Y + p.Z*p.Z 72 } 73 74 // Unit returns the unit vector colinear to p. 75 // Unit returns {NaN,NaN,NaN} for the zero vector. 76 func Unit(p Vec) Vec { 77 if p.X == 0 && p.Y == 0 && p.Z == 0 { 78 return Vec{X: math.NaN(), Y: math.NaN(), Z: math.NaN()} 79 } 80 return Scale(1/Norm(p), p) 81 } 82 83 // Cos returns the cosine of the opening angle between p and q. 84 func Cos(p, q Vec) float64 { 85 return Dot(p, q) / (Norm(p) * Norm(q)) 86 } 87 88 // Divergence returns the divergence of the vector field at the point p, 89 // approximated using finite differences with the given step sizes. 90 func Divergence(p, step Vec, field func(Vec) Vec) float64 { 91 sx := Vec{X: step.X} 92 divx := (field(Add(p, sx)).X - field(Sub(p, sx)).X) / step.X 93 sy := Vec{Y: step.Y} 94 divy := (field(Add(p, sy)).Y - field(Sub(p, sy)).Y) / step.Y 95 sz := Vec{Z: step.Z} 96 divz := (field(Add(p, sz)).Z - field(Sub(p, sz)).Z) / step.Z 97 return 0.5 * (divx + divy + divz) 98 } 99 100 // Gradient returns the gradient of the scalar field at the point p, 101 // approximated using finite differences with the given step sizes. 102 func Gradient(p, step Vec, field func(Vec) float64) Vec { 103 dx := Vec{X: step.X} 104 dy := Vec{Y: step.Y} 105 dz := Vec{Z: step.Z} 106 return Vec{ 107 X: (field(Add(p, dx)) - field(Sub(p, dx))) / (2 * step.X), 108 Y: (field(Add(p, dy)) - field(Sub(p, dy))) / (2 * step.Y), 109 Z: (field(Add(p, dz)) - field(Sub(p, dz))) / (2 * step.Z), 110 } 111 } 112 113 // minElem return a vector with the minimum components of two vectors. 114 func minElem(a, b Vec) Vec { 115 return Vec{ 116 X: math.Min(a.X, b.X), 117 Y: math.Min(a.Y, b.Y), 118 Z: math.Min(a.Z, b.Z), 119 } 120 } 121 122 // maxElem return a vector with the maximum components of two vectors. 123 func maxElem(a, b Vec) Vec { 124 return Vec{ 125 X: math.Max(a.X, b.X), 126 Y: math.Max(a.Y, b.Y), 127 Z: math.Max(a.Z, b.Z), 128 } 129 } 130 131 // absElem returns the vector with components set to their absolute value. 132 func absElem(a Vec) Vec { 133 return Vec{ 134 X: math.Abs(a.X), 135 Y: math.Abs(a.Y), 136 Z: math.Abs(a.Z), 137 } 138 } 139 140 // mulElem returns the Hadamard product between vectors a and b. 141 // 142 // v = {a.X*b.X, a.Y*b.Y, a.Z*b.Z} 143 func mulElem(a, b Vec) Vec { 144 return Vec{ 145 X: a.X * b.X, 146 Y: a.Y * b.Y, 147 Z: a.Z * b.Z, 148 } 149 } 150 151 // divElem returns the Hadamard product between vector a 152 // and the inverse components of vector b. 153 // 154 // v = {a.X/b.X, a.Y/b.Y, a.Z/b.Z} 155 func divElem(a, b Vec) Vec { 156 return Vec{ 157 X: a.X / b.X, 158 Y: a.Y / b.Y, 159 Z: a.Z / b.Z, 160 } 161 }