gonum.org/v1/gonum@v0.14.0/spatial/vptree/vptree_simple_example_test.go (about)

     1  // Copyright ©2019 The Gonum Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package vptree_test
     6  
     7  import (
     8  	"fmt"
     9  	"log"
    10  
    11  	"gonum.org/v1/gonum/spatial/vptree"
    12  )
    13  
    14  func ExampleTree() {
    15  	// Example data from https://en.wikipedia.org/wiki/K-d_tree
    16  	points := []vptree.Comparable{
    17  		vptree.Point{2, 3},
    18  		vptree.Point{5, 4},
    19  		vptree.Point{9, 6},
    20  		vptree.Point{4, 7},
    21  		vptree.Point{8, 1},
    22  		vptree.Point{7, 2},
    23  	}
    24  
    25  	t, err := vptree.New(points, 3, nil)
    26  	if err != nil {
    27  		log.Fatal(err)
    28  	}
    29  	q := vptree.Point{8, 7}
    30  	p, d := t.Nearest(q)
    31  	fmt.Printf("%v is closest point to %v, d=%f\n", p, q, d)
    32  	// Output:
    33  	// [9 6] is closest point to [8 7], d=1.414214
    34  }
    35  
    36  func ExampleTree_Do() {
    37  	// Example data from https://en.wikipedia.org/wiki/K-d_tree
    38  	points := []vptree.Comparable{
    39  		vptree.Point{2, 3},
    40  		vptree.Point{5, 4},
    41  		vptree.Point{9, 6},
    42  		vptree.Point{4, 7},
    43  		vptree.Point{8, 1},
    44  		vptree.Point{7, 2},
    45  	}
    46  
    47  	// Print all points in the data set within 3 of (3, 5).
    48  	t, err := vptree.New(points, 0, nil)
    49  	if err != nil {
    50  		log.Fatal(err)
    51  	}
    52  	q := vptree.Point{3, 5}
    53  	t.Do(func(c vptree.Comparable, _ int) (done bool) {
    54  		// Compare each distance and output points
    55  		// with a Euclidean distance less than or
    56  		// equal to 3. Distance returns the
    57  		// Euclidean distance between points.
    58  		if q.Distance(c) <= 3 {
    59  			fmt.Println(c)
    60  		}
    61  		return
    62  	})
    63  	// Unordered output:
    64  	// [2 3]
    65  	// [4 7]
    66  	// [5 4]
    67  }