gonum.org/v1/gonum@v0.14.0/stat/distuv/beta.go (about) 1 // Copyright ©2016 The Gonum Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package distuv 6 7 import ( 8 "math" 9 10 "golang.org/x/exp/rand" 11 12 "gonum.org/v1/gonum/mathext" 13 ) 14 15 // Beta implements the Beta distribution, a two-parameter continuous distribution 16 // with support between 0 and 1. 17 // 18 // The beta distribution has density function 19 // 20 // x^(α-1) * (1-x)^(β-1) * Γ(α+β) / (Γ(α)*Γ(β)) 21 // 22 // For more information, see https://en.wikipedia.org/wiki/Beta_distribution 23 type Beta struct { 24 // Alpha is the left shape parameter of the distribution. Alpha must be greater 25 // than 0. 26 Alpha float64 27 // Beta is the right shape parameter of the distribution. Beta must be greater 28 // than 0. 29 Beta float64 30 31 Src rand.Source 32 } 33 34 // CDF computes the value of the cumulative distribution function at x. 35 func (b Beta) CDF(x float64) float64 { 36 if x <= 0 { 37 return 0 38 } 39 if x >= 1 { 40 return 1 41 } 42 return mathext.RegIncBeta(b.Alpha, b.Beta, x) 43 } 44 45 // Entropy returns the differential entropy of the distribution. 46 func (b Beta) Entropy() float64 { 47 if b.Alpha <= 0 || b.Beta <= 0 { 48 panic("beta: negative parameters") 49 } 50 return mathext.Lbeta(b.Alpha, b.Beta) - (b.Alpha-1)*mathext.Digamma(b.Alpha) - 51 (b.Beta-1)*mathext.Digamma(b.Beta) + (b.Alpha+b.Beta-2)*mathext.Digamma(b.Alpha+b.Beta) 52 } 53 54 // ExKurtosis returns the excess kurtosis of the distribution. 55 func (b Beta) ExKurtosis() float64 { 56 num := 6 * ((b.Alpha-b.Beta)*(b.Alpha-b.Beta)*(b.Alpha+b.Beta+1) - b.Alpha*b.Beta*(b.Alpha+b.Beta+2)) 57 den := b.Alpha * b.Beta * (b.Alpha + b.Beta + 2) * (b.Alpha + b.Beta + 3) 58 return num / den 59 } 60 61 // LogProb computes the natural logarithm of the value of the probability 62 // density function at x. 63 func (b Beta) LogProb(x float64) float64 { 64 if x < 0 || x > 1 { 65 return math.Inf(-1) 66 } 67 68 if b.Alpha <= 0 || b.Beta <= 0 { 69 panic("beta: negative parameters") 70 } 71 72 lab, _ := math.Lgamma(b.Alpha + b.Beta) 73 la, _ := math.Lgamma(b.Alpha) 74 lb, _ := math.Lgamma(b.Beta) 75 var lx float64 76 if b.Alpha != 1 { 77 lx = (b.Alpha - 1) * math.Log(x) 78 } 79 var l1mx float64 80 if b.Beta != 1 { 81 l1mx = (b.Beta - 1) * math.Log(1-x) 82 } 83 return lab - la - lb + lx + l1mx 84 } 85 86 // Mean returns the mean of the probability distribution. 87 func (b Beta) Mean() float64 { 88 return b.Alpha / (b.Alpha + b.Beta) 89 } 90 91 // Mode returns the mode of the distribution. 92 // 93 // Mode returns NaN if both parameters are less than or equal to 1 as a special case, 94 // 0 if only Alpha <= 1 and 1 if only Beta <= 1. 95 func (b Beta) Mode() float64 { 96 if b.Alpha <= 1 { 97 if b.Beta <= 1 { 98 return math.NaN() 99 } 100 return 0 101 } 102 if b.Beta <= 1 { 103 return 1 104 } 105 return (b.Alpha - 1) / (b.Alpha + b.Beta - 2) 106 } 107 108 // NumParameters returns the number of parameters in the distribution. 109 func (b Beta) NumParameters() int { 110 return 2 111 } 112 113 // Prob computes the value of the probability density function at x. 114 func (b Beta) Prob(x float64) float64 { 115 return math.Exp(b.LogProb(x)) 116 } 117 118 // Quantile returns the inverse of the cumulative distribution function. 119 func (b Beta) Quantile(p float64) float64 { 120 if p < 0 || p > 1 { 121 panic(badPercentile) 122 } 123 return mathext.InvRegIncBeta(b.Alpha, b.Beta, p) 124 } 125 126 // Rand returns a random sample drawn from the distribution. 127 func (b Beta) Rand() float64 { 128 ga := Gamma{Alpha: b.Alpha, Beta: 1, Src: b.Src}.Rand() 129 gb := Gamma{Alpha: b.Beta, Beta: 1, Src: b.Src}.Rand() 130 return ga / (ga + gb) 131 } 132 133 // StdDev returns the standard deviation of the probability distribution. 134 func (b Beta) StdDev() float64 { 135 return math.Sqrt(b.Variance()) 136 } 137 138 // Survival returns the survival function (complementary CDF) at x. 139 func (b Beta) Survival(x float64) float64 { 140 switch { 141 case x <= 0: 142 return 1 143 case x >= 1: 144 return 0 145 } 146 return mathext.RegIncBeta(b.Beta, b.Alpha, 1-x) 147 } 148 149 // Variance returns the variance of the probability distribution. 150 func (b Beta) Variance() float64 { 151 return b.Alpha * b.Beta / ((b.Alpha + b.Beta) * (b.Alpha + b.Beta) * (b.Alpha + b.Beta + 1)) 152 }