gonum.org/v1/gonum@v0.14.0/stat/distuv/binomial.go (about) 1 // Copyright ©2018 The Gonum Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package distuv 6 7 import ( 8 "math" 9 10 "golang.org/x/exp/rand" 11 12 "gonum.org/v1/gonum/mathext" 13 "gonum.org/v1/gonum/stat/combin" 14 ) 15 16 // Binomial implements the binomial distribution, a discrete probability distribution 17 // that expresses the probability of a given number of successful Bernoulli trials 18 // out of a total of n, each with success probability p. 19 // The binomial distribution has the density function: 20 // 21 // f(k) = (n choose k) p^k (1-p)^(n-k) 22 // 23 // For more information, see https://en.wikipedia.org/wiki/Binomial_distribution. 24 type Binomial struct { 25 // N is the total number of Bernoulli trials. N must be greater than 0. 26 N float64 27 // P is the probability of success in any given trial. P must be in [0, 1]. 28 P float64 29 30 Src rand.Source 31 } 32 33 // CDF computes the value of the cumulative distribution function at x. 34 func (b Binomial) CDF(x float64) float64 { 35 if x < 0 { 36 return 0 37 } 38 if x >= b.N { 39 return 1 40 } 41 x = math.Floor(x) 42 return mathext.RegIncBeta(b.N-x, x+1, 1-b.P) 43 } 44 45 // ExKurtosis returns the excess kurtosis of the distribution. 46 func (b Binomial) ExKurtosis() float64 { 47 v := b.P * (1 - b.P) 48 return (1 - 6*v) / (b.N * v) 49 } 50 51 // LogProb computes the natural logarithm of the value of the probability 52 // density function at x. 53 func (b Binomial) LogProb(x float64) float64 { 54 if x < 0 || x > b.N || math.Floor(x) != x { 55 return math.Inf(-1) 56 } 57 lb := combin.LogGeneralizedBinomial(b.N, x) 58 return lb + x*math.Log(b.P) + (b.N-x)*math.Log(1-b.P) 59 } 60 61 // Mean returns the mean of the probability distribution. 62 func (b Binomial) Mean() float64 { 63 return b.N * b.P 64 } 65 66 // NumParameters returns the number of parameters in the distribution. 67 func (Binomial) NumParameters() int { 68 return 2 69 } 70 71 // Prob computes the value of the probability density function at x. 72 func (b Binomial) Prob(x float64) float64 { 73 return math.Exp(b.LogProb(x)) 74 } 75 76 // Rand returns a random sample drawn from the distribution. 77 func (b Binomial) Rand() float64 { 78 // NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5) 79 // p. 295-6 80 // http://www.aip.de/groups/soe/local/numres/bookcpdf/c7-3.pdf 81 82 runif := rand.Float64 83 rexp := rand.ExpFloat64 84 if b.Src != nil { 85 rnd := rand.New(b.Src) 86 runif = rnd.Float64 87 rexp = rnd.ExpFloat64 88 } 89 90 p := b.P 91 if p > 0.5 { 92 p = 1 - p 93 } 94 am := b.N * p 95 96 if b.N < 25 { 97 // Use direct method. 98 bnl := 0.0 99 for i := 0; i < int(b.N); i++ { 100 if runif() < p { 101 bnl++ 102 } 103 } 104 if p != b.P { 105 return b.N - bnl 106 } 107 return bnl 108 } 109 110 if am < 1 { 111 // Use rejection method with Poisson proposal. 112 const logM = 2.6e-2 // constant for rejection sampling (https://en.wikipedia.org/wiki/Rejection_sampling) 113 var bnl float64 114 z := -p 115 pclog := (1 + 0.5*z) * z / (1 + (1+1.0/6*z)*z) // Padé approximant of log(1 + x) 116 for { 117 bnl = 0.0 118 t := 0.0 119 for i := 0; i < int(b.N); i++ { 120 t += rexp() 121 if t >= am { 122 break 123 } 124 bnl++ 125 } 126 bnlc := b.N - bnl 127 z = -bnl / b.N 128 log1p := (1 + 0.5*z) * z / (1 + (1+1.0/6*z)*z) 129 t = (bnlc+0.5)*log1p + bnl - bnlc*pclog + 1/(12*bnlc) - am + logM // Uses Stirling's expansion of log(n!) 130 if rexp() >= t { 131 break 132 } 133 } 134 if p != b.P { 135 return b.N - bnl 136 } 137 return bnl 138 } 139 // Original algorithm samples from a Poisson distribution with the 140 // appropriate expected value. However, the Poisson approximation is 141 // asymptotic such that the absolute deviation in probability is O(1/n). 142 // Rejection sampling produces exact variates with at worst less than 3% 143 // rejection with minimal additional computation. 144 145 // Use rejection method with Cauchy proposal. 146 g, _ := math.Lgamma(b.N + 1) 147 plog := math.Log(p) 148 pclog := math.Log1p(-p) 149 sq := math.Sqrt(2 * am * (1 - p)) 150 for { 151 var em, y float64 152 for { 153 y = math.Tan(math.Pi * runif()) 154 em = sq*y + am 155 if em >= 0 && em < b.N+1 { 156 break 157 } 158 } 159 em = math.Floor(em) 160 lg1, _ := math.Lgamma(em + 1) 161 lg2, _ := math.Lgamma(b.N - em + 1) 162 t := 1.2 * sq * (1 + y*y) * math.Exp(g-lg1-lg2+em*plog+(b.N-em)*pclog) 163 if runif() <= t { 164 if p != b.P { 165 return b.N - em 166 } 167 return em 168 } 169 } 170 } 171 172 // Skewness returns the skewness of the distribution. 173 func (b Binomial) Skewness() float64 { 174 return (1 - 2*b.P) / b.StdDev() 175 } 176 177 // StdDev returns the standard deviation of the probability distribution. 178 func (b Binomial) StdDev() float64 { 179 return math.Sqrt(b.Variance()) 180 } 181 182 // Survival returns the survival function (complementary CDF) at x. 183 func (b Binomial) Survival(x float64) float64 { 184 return 1 - b.CDF(x) 185 } 186 187 // Variance returns the variance of the probability distribution. 188 func (b Binomial) Variance() float64 { 189 return b.N * b.P * (1 - b.P) 190 }