gonum.org/v1/gonum@v0.14.0/stat/distuv/poisson.go (about) 1 // Copyright ©2017 The Gonum Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package distuv 6 7 import ( 8 "math" 9 10 "golang.org/x/exp/rand" 11 12 "gonum.org/v1/gonum/mathext" 13 ) 14 15 // Poisson implements the Poisson distribution, a discrete probability distribution 16 // that expresses the probability of a given number of events occurring in a fixed 17 // interval. 18 // The poisson distribution has density function: 19 // 20 // f(k) = λ^k / k! e^(-λ) 21 // 22 // For more information, see https://en.wikipedia.org/wiki/Poisson_distribution. 23 type Poisson struct { 24 // Lambda is the average number of events in an interval. 25 // Lambda must be greater than 0. 26 Lambda float64 27 28 Src rand.Source 29 } 30 31 // CDF computes the value of the cumulative distribution function at x. 32 func (p Poisson) CDF(x float64) float64 { 33 if x < 0 { 34 return 0 35 } 36 return mathext.GammaIncRegComp(math.Floor(x+1), p.Lambda) 37 } 38 39 // ExKurtosis returns the excess kurtosis of the distribution. 40 func (p Poisson) ExKurtosis() float64 { 41 return 1 / p.Lambda 42 } 43 44 // LogProb computes the natural logarithm of the value of the probability 45 // density function at x. 46 func (p Poisson) LogProb(x float64) float64 { 47 if x < 0 || math.Floor(x) != x { 48 return math.Inf(-1) 49 } 50 lg, _ := math.Lgamma(math.Floor(x) + 1) 51 return x*math.Log(p.Lambda) - p.Lambda - lg 52 } 53 54 // Mean returns the mean of the probability distribution. 55 func (p Poisson) Mean() float64 { 56 return p.Lambda 57 } 58 59 // NumParameters returns the number of parameters in the distribution. 60 func (Poisson) NumParameters() int { 61 return 1 62 } 63 64 // Prob computes the value of the probability density function at x. 65 func (p Poisson) Prob(x float64) float64 { 66 return math.Exp(p.LogProb(x)) 67 } 68 69 // Rand returns a random sample drawn from the distribution. 70 func (p Poisson) Rand() float64 { 71 // NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5) 72 // p. 294 73 // <http://www.aip.de/groups/soe/local/numres/bookcpdf/c7-3.pdf> 74 75 rnd := rand.ExpFloat64 76 var rng *rand.Rand 77 if p.Src != nil { 78 rng = rand.New(p.Src) 79 rnd = rng.ExpFloat64 80 } 81 82 if p.Lambda < 10.0 { 83 // Use direct method. 84 var em float64 85 t := 0.0 86 for { 87 t += rnd() 88 if t >= p.Lambda { 89 break 90 } 91 em++ 92 } 93 return em 94 } 95 // Generate using: 96 // W. Hörmann. "The transformed rejection method for generating Poisson 97 // random variables." Insurance: Mathematics and Economics 98 // 12.1 (1993): 39-45. 99 100 // Algorithm PTRS 101 rnd = rand.Float64 102 if rng != nil { 103 rnd = rng.Float64 104 } 105 b := 0.931 + 2.53*math.Sqrt(p.Lambda) 106 a := -0.059 + 0.02483*b 107 invalpha := 1.1239 + 1.1328/(b-3.4) 108 vr := 0.9277 - 3.6224/(b-2) 109 for { 110 U := rnd() - 0.5 111 V := rnd() 112 us := 0.5 - math.Abs(U) 113 k := math.Floor((2*a/us+b)*U + p.Lambda + 0.43) 114 if us >= 0.07 && V <= vr { 115 return k 116 } 117 if k <= 0 || (us < 0.013 && V > us) { 118 continue 119 } 120 lg, _ := math.Lgamma(k + 1) 121 if math.Log(V*invalpha/(a/(us*us)+b)) <= k*math.Log(p.Lambda)-p.Lambda-lg { 122 return k 123 } 124 } 125 } 126 127 // Skewness returns the skewness of the distribution. 128 func (p Poisson) Skewness() float64 { 129 return 1 / math.Sqrt(p.Lambda) 130 } 131 132 // StdDev returns the standard deviation of the probability distribution. 133 func (p Poisson) StdDev() float64 { 134 return math.Sqrt(p.Variance()) 135 } 136 137 // Survival returns the survival function (complementary CDF) at x. 138 func (p Poisson) Survival(x float64) float64 { 139 return 1 - p.CDF(x) 140 } 141 142 // Variance returns the variance of the probability distribution. 143 func (p Poisson) Variance() float64 { 144 return p.Lambda 145 }