gonum.org/v1/gonum@v0.14.0/unit/doc.go (about)

     1  // Copyright ©2013 The Gonum Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  //go:generate go run generate_unit.go
     6  
     7  // Package unit provides a set of types and constants that facilitate
     8  // the use of the International System of Units (SI).
     9  //
    10  // The unit package provides two main functionalities: compile-time type-safe
    11  // base SI units and common derived units; and a system for dynamically
    12  // extensible user-defined units.
    13  //
    14  // # Static SI units
    15  //
    16  // This package provides a number of types representing either an SI base
    17  // unit or a common combination of base units, named for the physical quantity
    18  // it represents (Length, Mass, Pressure, etc.). Each type is defined from
    19  // float64. The value of the float64 represents the quantity of that unit as
    20  // expressed in SI base units (kilogram, metre, Pascal, etc.). For example,
    21  //
    22  //	height := 1.6 * unit.Metre
    23  //	acc := unit.Acceleration(9.8)
    24  //
    25  // creates a variable named 'height' with a value of 1.6 metres, and
    26  // a variable named 'acc' with a value of 9.8 metres per second squared.
    27  // These types can be used to add compile-time safety to code. For
    28  // example,
    29  //
    30  //	func unitVolume(t unit.Temperature, p unit.Pressure) unit.Volume {
    31  //		...
    32  //	}
    33  //
    34  //	func main(){
    35  //		t := 300 * unit.Kelvin
    36  //		p := 500 * unit.Kilo * unit.Pascal
    37  //		v := unitVolume(p, t) // compile-time error
    38  //	}
    39  //
    40  // gives a compile-time error (temperature type does not match pressure type)
    41  // while the corresponding code using float64 runs without error.
    42  //
    43  //	func float64Volume(temperature, pressure float64) float64 {
    44  //		...
    45  //	}
    46  //
    47  //	func main(){
    48  //		t := 300.0 // Kelvin
    49  //		p := 500000.0 // Pascals
    50  //		v := float64Volume(p, t) // no error
    51  //	}
    52  //
    53  // Many types have constants defined representing named SI units (Metre,
    54  // Kilogram, etc. ) or SI derived units (Pascal, Hz, etc.). The unit package
    55  // additionally provides untyped constants for SI prefixes, so the following
    56  // are all equivalent.
    57  //
    58  //	l := 0.001 * unit.Metre
    59  //	k := 1 * unit.Milli * unit.Metre
    60  //	j := unit.Length(0.001)
    61  //
    62  // Additional SI-derived static units can also be defined by adding types that
    63  // satisfy the Uniter interface described below.
    64  //
    65  // # Dynamic user-extensible unit system
    66  //
    67  // The unit package also provides the Unit type, a representation of a general
    68  // dimensional value. Unit can be used to help prevent errors of dimensionality
    69  // when multiplying or dividing dimensional numbers defined at run time. New
    70  // variables of type Unit can be created with the New function and the
    71  // Dimensions map. For example, the code
    72  //
    73  //	rate := unit.New(1 * unit.Milli, Dimensions{MoleDim: 1, TimeDim: -1})
    74  //
    75  // creates a variable "rate" which has a value of 1e-3 mol/s. Methods of
    76  // unit can be used to modify this value, for example:
    77  //
    78  //	rate.Mul(1 * unit.Centi * unit.Metre).Div(1 * unit.Milli * unit.Volt)
    79  //
    80  // To convert the unit back into a typed float64 value, the From methods
    81  // of the dimensional types should be used. From will return an error if the
    82  // dimensions do not match.
    83  //
    84  //	var energy unit.Energy
    85  //	err := energy.From(acc)
    86  //
    87  // Domain-specific problems may need custom dimensions, and for this purpose
    88  // NewDimension should be used to help avoid accidental overlap between
    89  // packages. For example, results from a blood test may be measured in
    90  // "White blood cells per slide". In this case, NewDimension should be
    91  // used to create a 'WhiteBloodCell' dimension. NewDimension takes in a
    92  // string which will be used for printing that dimension, and will return
    93  // a unique dimension number.
    94  //
    95  //	wbc := unit.NewDimension("WhiteBloodCell")
    96  //
    97  // NewDimension should not be used, however, to create the unit of 'Slide',
    98  // because in this case slide is just a measurement of liquid volume. Instead,
    99  // a constant could be defined.
   100  //
   101  //	const Slide unit.Volume =  0.1 * unit.Micro * unit.Litre
   102  //
   103  // Note that unit cannot catch all errors related to dimensionality.
   104  // Different physical ideas are sometimes expressed with the same dimensions
   105  // and unit is incapable of catching these mismatches. For example, energy and
   106  // torque are both expressed as force times distance (Newton-metres in SI),
   107  // but it is wrong to say that a torque of 10 N·m is the same as 10 J, even
   108  // though the dimensions agree. Despite this, using the defined types to
   109  // represent units can help to catch errors at compile-time. For example,
   110  // using unit.Torque allows you to define a statically typed function like so
   111  //
   112  //	func LeverLength(apply unit.Force, want unit.Torque) unit.Length {
   113  //		return unit.Length(float64(want)/float64(apply))
   114  //	}
   115  //
   116  // This will prevent an energy value being provided to LeverLength in place
   117  // of a torque value.
   118  package unit // import "gonum.org/v1/gonum/unit"