gonum.org/v1/gonum@v0.15.1-0.20240517103525-f853624cb1bb/lapack/gonum/dgecon.go (about) 1 // Copyright ©2015 The Gonum Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package gonum 6 7 import ( 8 "math" 9 10 "gonum.org/v1/gonum/blas" 11 "gonum.org/v1/gonum/blas/blas64" 12 "gonum.org/v1/gonum/lapack" 13 ) 14 15 // Dgecon estimates and returns the reciprocal of the condition number of the 16 // n×n matrix A, in either the 1-norm or the ∞-norm, using the LU factorization 17 // computed by Dgetrf. 18 // 19 // An estimate is obtained for norm(A⁻¹), and the reciprocal of the condition 20 // number rcond is computed as 21 // 22 // rcond 1 / ( norm(A) * norm(A⁻¹) ). 23 // 24 // If n is zero, rcond is always 1. 25 // 26 // anorm is the 1-norm or the ∞-norm of the original matrix A. anorm must be 27 // non-negative, otherwise Dgecon will panic. If anorm is 0 or infinity, Dgecon 28 // returns 0. If anorm is NaN, Dgecon returns NaN. 29 // 30 // work must have length at least 4*n and iwork must have length at least n, 31 // otherwise Dgecon will panic. 32 func (impl Implementation) Dgecon(norm lapack.MatrixNorm, n int, a []float64, lda int, anorm float64, work []float64, iwork []int) float64 { 33 switch { 34 case norm != lapack.MaxColumnSum && norm != lapack.MaxRowSum: 35 panic(badNorm) 36 case n < 0: 37 panic(nLT0) 38 case lda < max(1, n): 39 panic(badLdA) 40 case anorm < 0: 41 panic(negANorm) 42 } 43 44 // Quick return if possible. 45 if n == 0 { 46 return 1 47 } 48 49 switch { 50 case len(a) < (n-1)*lda+n: 51 panic(shortA) 52 case len(work) < 4*n: 53 panic(shortWork) 54 case len(iwork) < n: 55 panic(shortIWork) 56 } 57 58 // Quick return if possible. 59 switch { 60 case anorm == 0: 61 return 0 62 case math.IsNaN(anorm): 63 // Propagate NaN. 64 return anorm 65 case math.IsInf(anorm, 1): 66 return 0 67 } 68 69 bi := blas64.Implementation() 70 var rcond, ainvnm float64 71 var kase int 72 var normin bool 73 isave := new([3]int) 74 onenrm := norm == lapack.MaxColumnSum 75 smlnum := dlamchS 76 kase1 := 2 77 if onenrm { 78 kase1 = 1 79 } 80 for { 81 ainvnm, kase = impl.Dlacn2(n, work[n:], work, iwork, ainvnm, kase, isave) 82 if kase == 0 { 83 if ainvnm != 0 { 84 rcond = (1 / ainvnm) / anorm 85 } 86 return rcond 87 } 88 var sl, su float64 89 if kase == kase1 { 90 sl = impl.Dlatrs(blas.Lower, blas.NoTrans, blas.Unit, normin, n, a, lda, work, work[2*n:]) 91 su = impl.Dlatrs(blas.Upper, blas.NoTrans, blas.NonUnit, normin, n, a, lda, work, work[3*n:]) 92 } else { 93 su = impl.Dlatrs(blas.Upper, blas.Trans, blas.NonUnit, normin, n, a, lda, work, work[3*n:]) 94 sl = impl.Dlatrs(blas.Lower, blas.Trans, blas.Unit, normin, n, a, lda, work, work[2*n:]) 95 } 96 scale := sl * su 97 normin = true 98 if scale != 1 { 99 ix := bi.Idamax(n, work, 1) 100 if scale == 0 || scale < math.Abs(work[ix])*smlnum { 101 return rcond 102 } 103 impl.Drscl(n, scale, work, 1) 104 } 105 } 106 }