gonum.org/v1/gonum@v0.15.1-0.20240517103525-f853624cb1bb/lapack/gonum/dgetf2.go (about) 1 // Copyright ©2015 The Gonum Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package gonum 6 7 import ( 8 "math" 9 10 "gonum.org/v1/gonum/blas/blas64" 11 ) 12 13 // Dgetf2 computes the LU decomposition of an m×n matrix A using partial 14 // pivoting with row interchanges. 15 // 16 // The LU decomposition is a factorization of A into 17 // 18 // A = P * L * U 19 // 20 // where P is a permutation matrix, L is a lower triangular with unit diagonal 21 // elements (lower trapezoidal if m > n), and U is upper triangular (upper 22 // trapezoidal if m < n). 23 // 24 // On entry, a contains the matrix A. On return, L and U are stored in place 25 // into a, and P is represented by ipiv. 26 // 27 // ipiv contains a sequence of row interchanges. It indicates that row i of the 28 // matrix was interchanged with ipiv[i]. ipiv must have length min(m,n), and 29 // Dgetf2 will panic otherwise. ipiv is zero-indexed. 30 // 31 // Dgetf2 returns whether the matrix A is nonsingular. The LU decomposition will 32 // be computed regardless of the singularity of A, but the result should not be 33 // used to solve a system of equation. 34 // 35 // Dgetf2 is an internal routine. It is exported for testing purposes. 36 func (Implementation) Dgetf2(m, n int, a []float64, lda int, ipiv []int) (ok bool) { 37 mn := min(m, n) 38 switch { 39 case m < 0: 40 panic(mLT0) 41 case n < 0: 42 panic(nLT0) 43 case lda < max(1, n): 44 panic(badLdA) 45 } 46 47 // Quick return if possible. 48 if mn == 0 { 49 return true 50 } 51 52 switch { 53 case len(a) < (m-1)*lda+n: 54 panic(shortA) 55 case len(ipiv) != mn: 56 panic(badLenIpiv) 57 } 58 59 bi := blas64.Implementation() 60 61 sfmin := dlamchS 62 ok = true 63 for j := 0; j < mn; j++ { 64 // Find a pivot and test for singularity. 65 jp := j + bi.Idamax(m-j, a[j*lda+j:], lda) 66 ipiv[j] = jp 67 if a[jp*lda+j] == 0 { 68 ok = false 69 } else { 70 // Swap the rows if necessary. 71 if jp != j { 72 bi.Dswap(n, a[j*lda:], 1, a[jp*lda:], 1) 73 } 74 if j < m-1 { 75 aj := a[j*lda+j] 76 if math.Abs(aj) >= sfmin { 77 bi.Dscal(m-j-1, 1/aj, a[(j+1)*lda+j:], lda) 78 } else { 79 for i := 0; i < m-j-1; i++ { 80 a[(j+1)*lda+j] = a[(j+1)*lda+j] / a[lda*j+j] 81 } 82 } 83 } 84 } 85 if j < mn-1 { 86 bi.Dger(m-j-1, n-j-1, -1, a[(j+1)*lda+j:], lda, a[j*lda+j+1:], 1, a[(j+1)*lda+j+1:], lda) 87 } 88 } 89 return ok 90 }