gonum.org/v1/gonum@v0.15.1-0.20240517103525-f853624cb1bb/lapack/gonum/dgghrd.go (about) 1 // Copyright ©2023 The Gonum Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package gonum 6 7 import ( 8 "gonum.org/v1/gonum/blas" 9 "gonum.org/v1/gonum/blas/blas64" 10 "gonum.org/v1/gonum/lapack" 11 ) 12 13 // Dgghrd reduces a pair of real matrices (A,B) to generalized upper Hessenberg 14 // form using orthogonal transformations, where A is a general matrix and B is 15 // upper triangular. 16 // 17 // This subroutine simultaneously reduces A to a Hessenberg matrix H 18 // 19 // Qᵀ*A*Z = H, 20 // 21 // and transforms B to another upper triangular matrix T 22 // 23 // Qᵀ*B*Z = T. 24 // 25 // The orthogonal matrices Q and Z are determined as products of Givens 26 // rotations. They may either be formed explicitly (lapack.OrthoExplicit), or 27 // they may be postmultiplied into input matrices Q1 and Z1 28 // (lapack.OrthoPostmul), so that 29 // 30 // Q1 * A * Z1ᵀ = (Q1*Q) * H * (Z1*Z)ᵀ, 31 // Q1 * B * Z1ᵀ = (Q1*Q) * T * (Z1*Z)ᵀ. 32 // 33 // ilo and ihi determine the block of A that will be reduced. It must hold that 34 // 35 // - 0 <= ilo <= ihi < n if n > 0, 36 // - ilo == 0 and ihi == -1 if n == 0, 37 // 38 // otherwise Dgghrd will panic. 39 // 40 // Dgghrd is an internal routine. It is exported for testing purposes. 41 func (impl Implementation) Dgghrd(compq, compz lapack.OrthoComp, n, ilo, ihi int, a []float64, lda int, b []float64, ldb int, q []float64, ldq int, z []float64, ldz int) { 42 switch { 43 case compq != lapack.OrthoNone && compq != lapack.OrthoExplicit && compq != lapack.OrthoPostmul: 44 panic(badOrthoComp) 45 case compz != lapack.OrthoNone && compz != lapack.OrthoExplicit && compz != lapack.OrthoPostmul: 46 panic(badOrthoComp) 47 case n < 0: 48 panic(nLT0) 49 case ilo < 0 || max(0, n-1) < ilo: 50 panic(badIlo) 51 case ihi < min(ilo, n-1) || n <= ihi: 52 panic(badIhi) 53 case lda < max(1, n): 54 panic(badLdA) 55 case ldb < max(1, n): 56 panic(badLdB) 57 case (compq != lapack.OrthoNone && ldq < n) || ldq < 1: 58 panic(badLdQ) 59 case (compz != lapack.OrthoNone && ldz < n) || ldz < 1: 60 panic(badLdZ) 61 } 62 63 // Quick return if possible. 64 if n == 0 { 65 return 66 } 67 68 switch { 69 case len(a) < (n-1)*lda+n: 70 panic(shortA) 71 case len(b) < (n-1)*ldb+n: 72 panic(shortB) 73 case compq != lapack.OrthoNone && len(q) < (n-1)*ldq+n: 74 panic(shortQ) 75 case compz != lapack.OrthoNone && len(z) < (n-1)*ldz+n: 76 panic(shortZ) 77 } 78 79 if compq == lapack.OrthoExplicit { 80 impl.Dlaset(blas.All, n, n, 0, 1, q, ldq) 81 } 82 if compz == lapack.OrthoExplicit { 83 impl.Dlaset(blas.All, n, n, 0, 1, z, ldz) 84 } 85 86 // Quick return if possible. 87 if n == 1 { 88 return 89 } 90 91 // Zero out lower triangle of B. 92 for i := 1; i < n; i++ { 93 for j := 0; j < i; j++ { 94 b[i*ldb+j] = 0 95 } 96 } 97 bi := blas64.Implementation() 98 // Reduce A and B. 99 for jcol := ilo; jcol <= ihi-2; jcol++ { 100 for jrow := ihi; jrow >= jcol+2; jrow-- { 101 // Step 1: rotate rows jrow-1, jrow to kill A[jrow,jcol]. 102 var c, s float64 103 c, s, a[(jrow-1)*lda+jcol] = impl.Dlartg(a[(jrow-1)*lda+jcol], a[jrow*lda+jcol]) 104 a[jrow*lda+jcol] = 0 105 106 bi.Drot(n-jcol-1, a[(jrow-1)*lda+jcol+1:], 1, a[jrow*lda+jcol+1:], 1, c, s) 107 bi.Drot(n+2-jrow-1, b[(jrow-1)*ldb+jrow-1:], 1, b[jrow*ldb+jrow-1:], 1, c, s) 108 109 if compq != lapack.OrthoNone { 110 bi.Drot(n, q[jrow-1:], ldq, q[jrow:], ldq, c, s) 111 } 112 113 // Step 2: rotate columns jrow, jrow-1 to kill B[jrow,jrow-1]. 114 c, s, b[jrow*ldb+jrow] = impl.Dlartg(b[jrow*ldb+jrow], b[jrow*ldb+jrow-1]) 115 b[jrow*ldb+jrow-1] = 0 116 117 bi.Drot(ihi+1, a[jrow:], lda, a[jrow-1:], lda, c, s) 118 bi.Drot(jrow, b[jrow:], ldb, b[jrow-1:], ldb, c, s) 119 120 if compz != lapack.OrthoNone { 121 bi.Drot(n, z[jrow:], ldz, z[jrow-1:], ldz, c, s) 122 } 123 } 124 } 125 }