gonum.org/v1/gonum@v0.15.1-0.20240517103525-f853624cb1bb/lapack/gonum/dptsv.go (about) 1 // Copyright ©2023 The Gonum Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package gonum 6 7 // Dptsv computes the solution to system of linear equations 8 // 9 // A * X = B 10 // 11 // where A is an n×n symmetric positive definite tridiagonal matrix, and X and B 12 // are n×nrhs matrices. A is factored as A = L*D*Lᵀ, and the factored form of A 13 // is then used to solve the system of equations. 14 // 15 // On entry, d contains the n diagonal elements of A and e contains the (n-1) 16 // subdiagonal elements of A. On return, d contains the n diagonal elements of 17 // the diagonal matrix D from the factorization A = L*D*Lᵀ and e contains the 18 // (n-1) subdiagonal elements of the unit bidiagonal factor L. 19 // 20 // Dptsv returns whether the solution X has been successfully computed. 21 func (impl Implementation) Dptsv(n, nrhs int, d, e []float64, b []float64, ldb int) (ok bool) { 22 switch { 23 case n < 0: 24 panic(nLT0) 25 case nrhs < 0: 26 panic(nrhsLT0) 27 case ldb < max(1, nrhs): 28 panic(badLdB) 29 } 30 31 if n == 0 || nrhs == 0 { 32 return true 33 } 34 35 switch { 36 case len(d) < n: 37 panic(shortD) 38 case len(e) < n-1: 39 panic(shortE) 40 case len(b) < (n-1)*ldb+nrhs: 41 panic(shortB) 42 } 43 44 ok = impl.Dpttrf(n, d, e) 45 if ok { 46 impl.Dpttrs(n, nrhs, d, e, b, ldb) 47 } 48 return ok 49 }