gonum.org/v1/gonum@v0.15.1-0.20240517103525-f853624cb1bb/lapack/testlapack/dpttrs.go (about) 1 // Copyright ©2023 The Gonum Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package testlapack 6 7 import ( 8 "fmt" 9 "testing" 10 11 "golang.org/x/exp/rand" 12 "gonum.org/v1/gonum/blas/blas64" 13 "gonum.org/v1/gonum/lapack" 14 ) 15 16 type Dpttrser interface { 17 Dpttrs(n, nrhs int, d, e []float64, b []float64, ldb int) 18 19 Dpttrfer 20 } 21 22 func DpttrsTest(t *testing.T, impl Dpttrser) { 23 rnd := rand.New(rand.NewSource(1)) 24 for _, n := range []int{0, 1, 2, 3, 4, 5, 10, 20, 50, 51, 52, 53, 54, 100} { 25 for _, nrhs := range []int{0, 1, 2, 3, 4, 5, 10, 20, 50} { 26 for _, ldb := range []int{max(1, nrhs), nrhs + 3} { 27 dpttrsTest(t, impl, rnd, n, nrhs, ldb) 28 } 29 } 30 } 31 } 32 33 func dpttrsTest(t *testing.T, impl Dpttrser, rnd *rand.Rand, n, nrhs, ldb int) { 34 const tol = 1e-15 35 36 name := fmt.Sprintf("n=%v", n) 37 38 // Generate a random diagonally dominant symmetric tridiagonal matrix A. 39 d, e := newRandomSymTridiag(n, rnd) 40 41 // Make a copy of d and e to hold the factorization. 42 dFac := make([]float64, len(d)) 43 copy(dFac, d) 44 eFac := make([]float64, len(e)) 45 copy(eFac, e) 46 47 // Compute the Cholesky factorization of A. 48 ok := impl.Dpttrf(n, dFac, eFac) 49 if !ok { 50 t.Errorf("%v: bad test matrix, Dpttrf failed", name) 51 return 52 } 53 54 // Generate a random solution matrix X. 55 xWant := randomGeneral(n, nrhs, ldb, rnd) 56 57 // Compute the right-hand side. 58 b := zeros(n, nrhs, ldb) 59 dstmm(n, nrhs, d, e, xWant.Data, xWant.Stride, b.Data, b.Stride) 60 61 // Solve A*X=B. 62 impl.Dpttrs(n, nrhs, dFac, eFac, b.Data, b.Stride) 63 64 resid := dpttrsResidual(b, xWant) 65 if resid > tol { 66 t.Errorf("%v: unexpected solution: |diff| = %v, want <= %v", name, resid, tol) 67 } 68 } 69 70 // dstmm computes the matrix-matrix product 71 // 72 // C = A*B 73 // 74 // where A is an m×m symmetric tridiagonal matrix represented by the diagonal d 75 // and subdiagonal e, and B and C are m×n matrices. 76 func dstmm(m, n int, d, e []float64, b []float64, ldb int, c []float64, ldc int) { 77 if m == 0 || n == 0 { 78 return 79 } 80 if m == 1 { 81 d0 := d[0] 82 for j, b0j := range b[:n] { 83 c[j] = d0 * b0j 84 } 85 return 86 } 87 for j := 0; j < n; j++ { 88 c[j] = d[0]*b[j] + e[0]*b[ldb+j] 89 } 90 for i := 1; i < m-1; i++ { 91 for j := 0; j < n; j++ { 92 c[i*ldc+j] = e[i-1]*b[(i-1)*ldb+j] + d[i]*b[i*ldb+j] + e[i]*b[(i+1)*ldb+j] 93 } 94 } 95 for j := 0; j < n; j++ { 96 c[(m-1)*ldc+j] = e[m-2]*b[(m-2)*ldb+j] + d[m-1]*b[(m-1)*ldb+j] 97 } 98 } 99 100 // dpttrsResidual returns |XGOT - XWANT|_1 / n. 101 func dpttrsResidual(xGot, xWant blas64.General) float64 { 102 n, nrhs := xGot.Rows, xGot.Cols 103 d := zeros(n, nrhs, nrhs) 104 for i := 0; i < n; i++ { 105 for j := 0; j < nrhs; j++ { 106 d.Data[i*d.Stride+j] = xGot.Data[i*xGot.Stride+j] - xWant.Data[i*xWant.Stride+j] 107 } 108 } 109 return dlange(lapack.MaxColumnSum, n, nrhs, d.Data, d.Stride) / float64(n) 110 }